论文标题
Daugavet和直径在Orlicz-Lorentz空间中的两个特性
Daugavet and diameter two properties in Orlicz-Lorentz spaces
论文作者
论文摘要
在本文中,我们研究了配备有卢森堡标准的Orlicz-Lorentz空间中的直径两种特性(D2P),直径两个特性(直径D2P)和Daugavet特性。首先,我们通过考虑所有有限的现实价值orlicz函数来表征Orlicz-Lorentz空间中Orlicz-Lorentz空间的rad-nikodým属性。为了证明这一点,计算了由扩展的实价函数定义的双空间的基本功能。我们还表明,如果Orlicz函数不满足适当的$δ_2$条件,则Orlicz-Lorentz空间及其订单连续子空间具有强直径的两个属性。因此,鉴于Orlicz函数是无穷大的N功能,因此相同的条件表征了Orlicz-Lorentz空间的两个特性以及其Köthe双空间的八面体性。当重量函数是常规的时,具有Daugavet属性和直径D2P的Orlicz-Lorentz函数空间和直径D2P的同构为$ L_1 $。在此过程中,我们观察到每个本地均匀的非Quaine点都不是$Δ$ - 点。这一事实提供了另一类无需$δ$ - 点。作为另一个应用程序,结果表明,对于配备了卢森堡标准的Orlicz-Lorentz空间,由无穷大的N功能定义,其Köthe双空间没有局部直径两个属性,也没有其他(直径)直径的两种属性和Daugagavet属性。
In this article, we study the diameter two properties (D2Ps), the diametral diameter two properties (diametral D2Ps), and the Daugavet property in Orlicz-Lorentz spaces equipped with the Luxemburg norm. First, we characterize the Radon-Nikodým property of Orlicz-Lorentz spaces in full generality by considering all finite real-valued Orlicz functions. To show this, the fundamental functions of their Köthe dual spaces defined by extended real-valued Orlicz functions are computed. We also show that if an Orlicz function does not satisfy the appropriate $Δ_2$-condition, the Orlicz-Lorentz space and its order-continuous subspace have the strong diameter two property. Consequently, given that an Orlicz function is an N-function at infinity, the same condition characterizes the diameter two properties of Orlicz-Lorentz spaces as well as the octahedralities of their Köthe dual spaces. The Orlicz-Lorentz function spaces with the Daugavet property and the diametral D2Ps are isometrically isomorphic to $L_1$ when the weight function is regular. In the process, we observe that every locally uniformly nonsquare point is not a $Δ$-point. This fact provides another class of real Banach spaces without $Δ$-points. As another application, it is shown that for Orlicz-Lorentz spaces equipped with the Luxemburg norm defined by an N-function at infinity, their Köthe dual spaces do not have the local diameter two property, and so as other (diametral) diameter two properties and the Daugavet property.