论文标题

线性扩散的动力大偏差

Dynamical large deviations of linear diffusions

论文作者

Buisson, Johan du, Touchette, Hugo

论文摘要

线性扩散用于对物理中的大量随机过程进行建模,包括受热噪声扰动的小机械和电气系统,以及由电气和光学力控制的布朗颗粒。在这里,我们使用来自大偏差理论的技术来研究线性扩散的时间集成功能的统计数据,考虑了三类功能或可观察到与及时涉及状态的线性或二次积分的非平衡系统相关的可观察到的。为此,我们得出了缩放累积的生成函数和速率函数的精确结果,以长期极限的观测值的波动表征,并以精确的方式研究了这些波动构成的路径或有效过程。结果可以完整描述在线性扩散中如何在状态下保持线性的线性扩散中的波动,或者在求解riccati-type方程的波动密度和电流方面。我们使用两个常见的非平衡模型来说明这些结果,即涉及非保守旋转力的二维横向扩散,以及在不同温度下与热浴接触的两个相互作用的颗粒。

Linear diffusions are used to model a large number of stochastic processes in physics, including small mechanical and electrical systems perturbed by thermal noise, as well as Brownian particles controlled by electrical and optical forces. Here, we use techniques from large deviation theory to study the statistics of time-integrated functionals of linear diffusions, considering three classes of functionals or observables relevant for nonequilibrium systems which involve linear or quadratic integrals of the state in time. For these, we derive exact results for the scaled cumulant generating function and the rate function, characterizing the fluctuations of observables in the long-time limit, and study in an exact way the set of paths or effective process that underlies these fluctuations. The results gives a complete description of how fluctuations arise in linear diffusions in terms of effective forces that remain linear in the state or, alternatively, in terms of fluctuating densities and currents that solve Riccati-type equations. We illustrate these results using two common nonequilibrium models, namely, transverse diffusions in two dimensions involving a non-conservative rotating force, and two interacting particles in contact with heat baths at different temperatures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源