论文标题

希尔伯特(Hilbert

A version of Hilbert's 16th Problem for 3D polynomial vector fields: Counting isolated invariant tori

论文作者

Novaes, Douglas D., Pereira, Pedro C. C. R.

论文摘要

希尔伯特(Hilbert)的第16个问题,关于给定程度$ m $的平面多项式矢量场的最大限制循环数量,一直是矢量场定性理论中最重要的驱动力之一。增加尺寸,人们不能期望存在有限的上限,例如,给定度量$ m $的$ 3 $ d多项式矢量字段。在这里,作为在$ 3 $ d空间中此类问题的扩展,我们调查了$ 3 $ d多项式矢量字段中隔离的不变托里的数量。在这种情况下,鉴于天然数量$ m $,我们用$ n(m)$表示的上限,用于$ 3 $ d多项式矢量$ m $ $ m $的隔离不变托里的数量。基于最近开发的平均方法来检测不变的Tori,我们的第一个主要结果提供了一种机制,可以从给定平面差异矢量字段中使用$ H $ H $双曲线限制限制的给定平面差分矢量字段的数字$ h $ $ h $ h $ h $ h $ h $ h $ h $ h $ bundiale vor fibs提供机制。我们研究数字$ n(m)$的机制的强度在于以下事实:构建的$ 3 $ d差分矢量场是多项式的,只要给定的平面差异矢量场是多项式的。因此,我们的第二个主要结果在$ n(m)$的下界建立了一个下限,用于平面多项式矢量的双曲线极限周期,度$ [m/2] -1 $。基于最后一个结果,我们应用了由于Christopher&Lloyd而导致的方法,以表明$ n(m)$的生长速度高达$ m^3/128 $。最后,上述问题还针对较高维度多项式矢量场进行了制定。

Hilbert's 16th Problem, about the maximum number of limit cycles of planar polynomial vector fields of a given degree $m$, has been one of the most important driving forces for new developments in the qualitative theory of vector fields. Increasing the dimension, one cannot expect the existence of a finite upper bound for the number of limit cycles of, for instance, $3$D polynomial vector fields of a given degree $m$. Here, as an extension of such a problem in the $3$D space, we investigate the number of isolated invariant tori in $3$D polynomial vector fields. In this context, given a natural number $m$, we denote by $N(m)$ the upper bound for the number of isolated invariant tori of $3$D polynomial vector fields of degree $m$. Based on a recently developed averaging method for detecting invariant tori, our first main result provides a mechanism for constructing $3$D differential vector fields with a number $H$ of normally hyperbolic invariant tori from a given planar differential vector field with $H$ hyperbolic limit cycles. The strength of our mechanism in studying the number $N(m)$ lies in the fact that the constructed $3$D differential vector field is polynomial provided that the given planar differential vector field is polynomial. Accordingly, our second main result establishes a lower bound for $N(m)$ in terms of lower bounds for the number of hyperbolic limit cycles of planar polynomial vector fields of degree $[m/2]-1$. Based on this last result, we apply a methodology due to Christopher & Lloyd to show that $N(m)$ grows as fast as $m^3/128$. Finally, the above-mentioned problem is also formulated for higher dimensional polynomial vector fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源