论文标题
1型量规部门的几何界限
Geometric Bounds on the 1-Form Gauge Sector
论文作者
论文摘要
我们将离散1型量规部门的允许结构分类为六维超级重力理论,称为F理论的压实。这提供了1型量规因子$ \ mathbb {z} _m $的上限,尤其要求每个循环因子服从$ m \ m \ leq 6 $。我们的边界对应于三倍的椭圆形的卡拉比野山脉的扭转亚组上的通用几何约束。对于任何具有至少一个张量多重的F理论真空吸尘器,我们从$ \ Mathbb {p}^1 $纤维化结构中得出约束,但基本的纤维纤维结构是两个方面的,并根据相关的异源串线的世界表格对称性确定了它们的物理起源。边界还扩展到F理论真空,没有张量的多重;通过对理论的特异性变形,然后是小的intenton跃迁,并未降低1型尺度扇区。我们设想,我们的几何界限可以促进到具有最小的超对称性的任何六维引力理论上的沼泽约束,也将其扩展到四维F理论真空吸尘器。
We classify the allowed structures of the discrete 1-form gauge sector in six-dimensional supergravity theories realized as F-theory compactifications. This provides upper bounds on the 1-form gauge factors $\mathbb{Z}_m$ and in particular demands each cyclic factor to obey $m\leq 6$. Our bounds correspond to the universal geometric constraints on the torsion subgroup of the Mordell-Weil group of elliptic Calabi-Yau three-folds. For any F-theory vacua with at least one tensor multiplet, we derive the constraints from the $\mathbb{P}^1$ fibration structure of the base two-fold and identify their physical origin in terms of the worldsheet symmetry of the associated effective heterotic string. The bounds are also extended to the F-theory vacua with no tensor multiplets via a specific deformation of the theory followed by a small instanton transition, along which the 1-form gauge sector is not reduced. We envision that our geometric bounds can be promoted to a swampland constraint on any six-dimensional gravitational theories with minimal supersymmetry and also extend them to four-dimensional F-theory vacua.