论文标题

形状理论的各个方面

Aspects of Conformal Field Theory

论文作者

Broccoli, Matteo

论文摘要

在本论文中,我们分析了保形场理论(CFTS)的三个方面。首先,我们考虑后代状态在二维CFT中的相关函数。我们讨论一个递归公式来计算它们并提供计算机实现。这使我们能够获得真空后代的任何相关函数,而非vacuum后代可以将相关器表达为作用于相应主要相关器的差分运算符。使用此代码,我们研究了后代状态之间的一些纠缠和可区分性措施,即Rényi熵,微量方形距离和夹心的rényi差异。通过我们的结果,我们可以测试rényi量子零的能量条件,并提供新的工具来分析后代状态的全息描述。其次,我们研究了不同背景上的四维Weyl费物。我们的兴趣在于它们的痕量异常,在那里据称出现了Pontryagin的密度。为了确定这种可能性,我们计算了与矢量和轴向非亚伯利亚仪表磁场,然后在度量 - 轴tens子背景中耦合的Dirac Fermions的异常。背景的适当限制可以恢复耦合到非亚洲量规场和弯曲时空中的Weyl Fermions的异常。在这两种情况下,我们都证实了痕量异常中缺乏泛素密度。第三,我们提供了与无关的操作员的四维CFT的全息描述。当操作员具有整数的共形尺寸时,其在CFT中的存在会修饰度量的韦伊尔转化,这反过来会修饰痕量异常。利用大量差异性和边界Weyl变换之间的等效性,我们从双重性重力理论中计算了这些修饰。我们的结果代表了对AD/CFT猜想的附加测试。

In this thesis we analyse three aspects of Conformal Field Theories (CFTs). First, we consider correlation functions of descendant states in two-dimensional CFTs. We discuss a recursive formula to calculate them and provide a computer implementation of it. This allows us to obtain any correlation function of vacuum descendants, and for non-vacuum descendants to express the correlator as a differential operator acting on the respective primary correlator. With this code, we study some entanglement and distinguishability measures between descendant states, i.e. the Rényi entropy, trace square distance and sandwiched Rényi divergence. With our results we can test the Rényi Quantum Null Energy Condition and provide new tools to analyse the holographic description of descendant states. Second, we study four-dimensional Weyl fermions on different backgrounds. Our interest is in their trace anomaly, where the Pontryagin density has been claimed to appear. To ascertain this possibility, we compute the anomalies of Dirac fermions coupled to vector and axial non-abelian gauge fields and then in a metric-axial-tensor background. Appropriate limits of the backgrounds allow to recover the anomalies of Weyl fermions coupled to non-abelian gauge fields and in a curved spacetime. In both cases we confirm the absence of the Pontryagin density in the trace anomalies. Third, we provide the holographic description of a four-dimensional CFT with an irrelevant operator. When the operator has integer conformal dimension, its presence in the CFT modifies the Weyl transformation of the metric, which in turns modifies the trace anomaly. Exploiting the equivalence between bulk diffeomorphisms and boundary Weyl transformations, we compute these modifications from the dual gravity theory. Our results represent an additional test of the AdS/CFT conjecture.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源