论文标题
迈向量子启用6G切片
Towards Quantum-Enabled 6G Slicing
论文作者
论文摘要
量子机学习(QML)范例及其与网络切片的协同作用可以预见到进入第六代时代(6G)的危险技术,其中移动通信系统以高级租赁的数字用例的形式为基础,以满足不同的服务要求。为了克服大规模切片的挑战,例如处理增加的动态,异质性,数据量,延长的训练时间以及SLICE实例的各种安全水平,可以将追求分布式计算和学习的量子计算的力量视为有希望的先决条件。在此意图中,我们提出了一个基于量子深的增强学习(QDRL)的云本地联合学习框架,其中分布式决策剂通过Kubernetes基础架构在边缘和云中部署为微服务,然后动态连接到无线电访问网络(RAN)。具体而言,决策者利用了经典的深钢筋学习(DRL)算法的归还量子电路(VQC),以获得对切片资源的最佳合作控制。最初的数值结果表明,所提出的联合QDRL(FQDRL)方案比基准解决方案提供了可比的性能,并揭示了参数降低中的量子优势。据我们所知,这是考虑6G通信网络的FQDRL方法的第一项探索性研究。
The quantum machine learning (QML) paradigms and their synergies with network slicing can be envisioned to be a disruptive technology on the cusp of entering to era of sixth-generation (6G), where the mobile communication systems are underpinned in the form of advanced tenancy-based digital use-cases to meet different service requirements. To overcome the challenges of massive slices such as handling the increased dynamism, heterogeneity, amount of data, extended training time, and variety of security levels for slice instances, the power of quantum computing pursuing a distributed computation and learning can be deemed as a promising prerequisite. In this intent, we propose a cloud-native federated learning framework based on quantum deep reinforcement learning (QDRL) where distributed decision agents deployed as micro-services at the edge and cloud through Kubernetes infrastructure then are connected dynamically to the radio access network (RAN). Specifically, the decision agents leverage the remold of classical deep reinforcement learning (DRL) algorithm into variational quantum circuits (VQCs) to obtain the optimal cooperative control on slice resources. The initial numerical results show that the proposed federated QDRL (FQDRL) scheme provides comparable performance than benchmark solutions and reveals the quantum advantage in parameter reduction. To the best of our knowledge, this is the first exploratory study considering an FQDRL approach for 6G communication network.