论文标题
在任意距离的完美状态转移
Perfect State Transfer in Arbitrary Distance
论文作者
论文摘要
量子完美状态转移(PST)是网络中量子通信的基本工具。这被认为是一种罕见的现象。 PST的最初想法取决于连续时间量子步行的基本原理。带有最多三个顶点的路径图允许PST。根据马尔可夫量子步行,我们在本文中引入了PST强大的方法。我们在任意长度的路径图的极端顶点之间建立PST。此外,任何一对顶点$ j $和$ n -j -j -j -j -j -1 $ in Path Graph带有$ n $ VERTICES允许PST以$ 0 \ leq j <\ frac {n -1} {2} $。另外,没有超过4美元的顶点的循环图不允许基于连续的量子步行。相比之下,我们根据马尔可夫量子量的步行建立了PST,在两对顶点$ j $和$ j + m $之间,$ j = 0,1,\ dots(m -1)$在带有$ 200M $ pertices的自行车图中。
Quantum Perfect State Transfer (PST) is a fundamental tool of quantum communication in a network. It is considered a rare phenomenon. The original idea of PST depends on the fundamentals of the continuous-time quantum walk. A path graph with at most three vertices allows PST. Based on the Markovian quantum walk, we introduce a significantly powerful method for PST in this article. We establish PST between the extreme vertices of a path graph of arbitrary length. Moreover, any pair of vertices $j$ and $n - j - 1$ in a path graph with $n$ vertices allow PST for $0 \leq j < \frac{n - 1}{2}$. Also, no cycle graph with more than $4$ vertices does not allow PST based on the continuous-time quantum walk. In contrast, we establish PSTs based on Markovian quantum walk between the pair of vertices $j$ and $j + m$ for $j = 0, 1, \dots (m - 1)$ in a cycle graph with $2m$ vertices.