论文标题
捕食者 - 捕集逆转在岩纸剪辑模型中的作用
Role of predator-prey reversal in Rock-Paper-Scissors models
论文作者
论文摘要
在这封信中,我们考虑了标准的三个物种岩纸仪(RPS)模型的单个参数概括,该模型允许捕食者逆转。该模型应称为$κ$ RPS模型,除了标准RPS模型的单向捕食者 - 捕食者相互作用外,还结合了所有物种之间的双向捕食者 - 捕集式相互作用。我们使用基于晶格的空间随机模拟具有随机初始条件的空间随机模拟来研究$κ$ RPS模型的May-Leonard公式的动力学。我们发现,如果模拟晶格足够大,可以维持所有三个物种的共存,则该模型渐近地导致形成的螺旋模式在质量上与标准RPS模型的演化相似,尽管具有较大的特征长度和时间尺度。我们表明,通常有两个不同的缩放制度:一个瞬态曲率主导的制度,其中人口网络的特征长度随时间而增长,而另一个人群网络的特征长度则变为常数。我们还估计了人口网络特征长度的渐近价值对捕食者捕集逆转的可能性的依赖性,并表明,如果仿真晶格不够大,那么捕食者捕集的逆转可能会对共存在产生重大的负面影响。最后,我们通过考虑圆形域的更简单动态来解释这些结果。
In this letter we consider a single parameter generalization of the standard three species Rock-Paper-Scissors (RPS) model allowing for predator-prey reversal. This model, which shall be referred to as $κ$RPS model, incorporates bidirectional predator-prey interactions between all the species in addition to the unidirectional predator-prey interactions of the standard RPS model. We study the dynamics of a May-Leonard formulation of the $κ$RPS model using lattice based spatial stochastic simulations with random initial conditions. We find that if the simulation lattices are sufficiently large for the coexistence of all three species to be maintained, the model asymptotically leads to the formation of spiral patterns whose evolution is qualitatively similar to that of the standard RPS model, albeit with larger characteristic length and time scales. We show that there are in general two distinct scaling regimes: one transient curvature dominated regime in which the characteristic length of the population network grows with time and another where it becomes a constant. We also estimate the dependence of the asymptotic value of the characteristic length of the population network on the likelihood of predator-prey reversal and show that if the simulation lattices are not sufficiently large then predator-prey reversal can have a significant negative impact on coexistence. Finally, we interpret these results by considering the much simpler dynamics of circular domains.