论文标题
三角形的极端签名图
Extremed signed graphs for triangle
论文作者
论文摘要
在本文中,我们研究了签名图版本的Turán问题。假设$ \ dot {g} $是$ e(\ dot {g})$ edges和$ e^ - (\ dot {g})$负面的连接$ n $连接的签名图$ n $,然后让$ρ(\ dot {g})$是$ \ dot cagrable of $ \ dot ragraph(\ dot {g})$ $ \ dot {g}^{s,t} $($ s+t = n-2 $)是从$ v(k_ {n-2})= \ {k_ {n-2})= \ {u_1,\ dots,v_1,v_1,v_1,v_t $ s,v_ two p(k_ {n-2})的全阳性clique $(k_ {n-2},+)$中获得的$($ s+t = n-2 $)通过添加负边缘$ uv $和正边缘$ uu_1,\ dots,uu_s,uu_s,vv_1,\ dots,vv_t。$首先,我们证明,如果$ \ dot {g} $是$ C_3^ - $ E($ c_3^ - free),那么dots $ u $和$ v $和$ v $。 \ frac {n(n-1)} {2} - (n-2),$均等时,仅当$ \ dot {g} \ sim \ dot {g} {g}^{s,t}。 \ lfloor \ frac {n-2} {2} \ rfloor \ lceil \ lceil \ frac {n-2} {2} {2} \ rceil+n-2,$ equality holdity in equality holding if,horl仅当$ \ dot {g}^g}^{s,t} = \ dot {g} _u^{\ lfloor \ frac {n-2} {2} {2} \ rfloor,\ lceil \ frac {n-2} {2} {2} \ rceil},$ $ \ dot {g} _u^{\ lfloor \ frac {n-2} {2} {2} \ rfloor,\ lceil \ frac {n-2} {2} {2} \ rceil} $是从中获得的$ \ dot {g}^{\ lfloor \ frac {n-2} {2} {2} \ rfloor,\ lceil \ frac {n-2} {2} {2} \ rceil} $通过在verte set上切换$ u = \ { \ frac {1} {2}(\ sqrt {n^2-8}+n-4),$具有等值时,只有$ \ dot {g} {g} \ sim \ sim \ dot {g}^{1,n-3}。
In this paper, we study the Turán problem of signed graphs version. Suppose that $\dot{G}$ is a connected unbalanced signed graph of order $n$ with $e(\dot{G})$ edges and $e^-(\dot{G})$ negative edges, and let $ρ(\dot{G})$ be the spectral radius of $\dot{G}.$ The signed graph $\dot{G}^{s,t}$ ($s+t=n-2$) is obtained from an all-positive clique $(K_{n-2},+)$ with $V(K_{n-2})=\{u_1,\dots,u_s,v_1,\dots,v_t\}$ ($s,t\ge 1$) and two isolated vertices $u$ and $v$ by adding negative edge $uv$ and positive edges $uu_1,\dots,uu_s,vv_1,\dots,vv_t.$ Firstly, we prove that if $\dot{G}$ is $C_3^-$-free, then $e(\dot{G})\le \frac{n(n-1)}{2}-(n-2),$ with equality holding if and only if $\dot{G}\sim \dot{G}^{s,t}.$ Moreover, $e^-(\dot{G}^{s,t})\le \lfloor\frac{n-2}{2}\rfloor\lceil\frac{n-2}{2}\rceil+n-2,$ with equality holding if and only if $\dot{G}^{s,t}= \dot{G}_U^{\lfloor\frac{n-2}{2}\rfloor,\lceil\frac{n-2}{2}\rceil},$ where $\dot{G}_U^{\lfloor\frac{n-2}{2}\rfloor,\lceil\frac{n-2}{2}\rceil}$ is obtained from $\dot{G}^{\lfloor\frac{n-2}{2}\rfloor,\lceil\frac{n-2}{2}\rceil}$ by switching at vertex set $U=\{v,u_1,\dots,u_{\lfloor\frac{n-2}{2}\rfloor}\}.$ Secondly, we prove that if $\dot{G}$ is $C_3^-$-free, then $ρ(\dot{G})\le \frac{1}{2}( \sqrt{ n^2-8}+n-4),$ with equality holding if and only if $\dot{G}\sim \dot{G}^{1,n-3}.$