论文标题
变异量子本素层的一种自持持续的现场方法:轨道优化具有自适应
A self-consistent field approach for the variational quantum eigensolver: orbital optimization goes adaptive
论文作者
论文摘要
我们在自适应导数组装的问题范围内提出了一种自我一致的野外方法(SCF),以实现近期量子计算机上的化学系统的有效量子模拟,以实现ANSATZ变化量子量子量化量。为此,我们的Adapt-VQE-SCF方法结合了生成Ansatz和少量参数的想法,从而导致浅深度量子电路,直接最小化能量表达,这对于分子轨道基础的变化而言是正确的。我们的数值分析,包括过渡金属复合二世的计算(Fe $ \ rm(C_5H_5)_2 $),表明可以在量子电路中与VQE Offication in VQE Optirtion在量子电路中的两种量子电路中的数量相当大幅度提高,可以达到自隔一的轨道优化环的收敛,而无需大量增加。此外,轨道优化可以在自适应VQE周期的每次迭代中同时进行。因此,Adapt-VQE-SCF使我们能够以近期量子计算机的硬件有效的方式实现类似于最先进的计算化学基石CASSCF的常规类似。因此,Adapt-VQE-SCF通过更少的量子和灵活的原子轨道基集使用,与较早的方法相比,基于完全基于全部活跃空间的想法,适用于量子计算机上的定量量子化学模拟,以迈向量子计算机的定量量子化学模拟的范围。
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Tailored Ansatz Variational Quantum Eigensolver (ADAPT-VQE) framework for efficient quantum simulations of chemical systems on near-term quantum computers. To this end, our ADAPT-VQE-SCF approach combines the idea of generating an ansatz with a small number of parameters, resulting in shallow-depth quantum circuits with a direct minimization of an energy expression which is correct to second order with respect to changes in the molecular orbital basis. Our numerical analysis, including calculations for the transition metal complex ferrocene (Fe$\rm (C_5H_5)_2$), indicates that convergence in the self-consistent orbital optimization loop can be reached without a considerable increase in the number of two-qubit gates in the quantum circuit by comparison to a VQE optimization in the initial molecular orbital basis. Moreover, the orbital optimization can be carried out simultaneously within each iteration of the ADAPT-VQE cycle. ADAPT-VQE-SCF thus allows us to implement a routine analogous to CASSCF, a cornerstone of state-of-the-art computational chemistry, in a hardware-efficient manner on near-term quantum computers. Hence, ADAPT-VQE-SCF paves the way towards a paradigm shift for quantitative quantum-chemistry simulations on quantum computers by requiring fewer qubits and opening up for the use of large and flexible atomic orbital basis sets in contrast to earlier methods that are predominantly based on the idea of full active spaces with minimal basis sets.