论文标题

自磨削系统中的三维涡流偶极孤子

Three-dimensional vortex dipole solitons in self-gravitating systems

论文作者

Lashkin, Volodymyr M., Cheremnykh, Oleg K., Ehsan, Zahida, Batool, Nazia

论文摘要

在假设扰动的特征频率与旋转频率相比的假设,我们得出了在非均匀旋转自磨液中的三维(3D)干扰动力学的非线性方程。这些方程的分析溶液以3D涡旋偶极子孤子子的形式找到。获得这些溶液的方法基于众所周知的Larichev-Reznik程序,用于在旋转行星的大气物理学中找到二维非线性偶极涡旋溶液。除了基本的3D X抗对称部分(载波)外,该溶液还可能包含沿旋转轴(Z轴)部分具有任意振幅的径向对称(单极)或/和反对称的,但是如果没有基本部分,这些叠加的部分就不可能存在。没有叠加零件的3D Vortex Soliton非常稳定。即使在存在初始噪声干扰的情况下,它也会不失真移动并保持其形状。具有径向对称或/和z抗对称的部分的孤子结果是不稳定的,尽管在这些叠加的部分的幅度足够小的情况下,Soliton将其形状保留了很长时间。

We derive the nonlinear equations governing the dynamics of three-dimensional (3D) disturbances in a nonuniform rotating self-gravitating fluid under the assumption that the characteristic frequencies of disturbances are small compared to the rotation frequency. Analytical solutions of these equations are found in the form of the 3D vortex dipole solitons. The method for obtaining these solutions is based on the well-known Larichev-Reznik procedure for finding two-dimensional nonlinear dipole vortex solutions in the physics of atmospheres of rotating planets. In addition to the basic 3D x-antisymmetric part (carrier), the solution may also contain radially symmetric (monopole) or/and antisymmetric along the rotation axis (z-axis) parts with arbitrary amplitudes, but these superimposed parts cannot exist without the basic part. The 3D vortex soliton without the superimposed parts is extremely stable. It moves without distortion and retains its shape even in the presence of an initial noise disturbance. The solitons with parts that are radially symmetric or/and z-antisymmetric turn out to be unstable, although at sufficiently small amplitudes of these superimposed parts, the soliton retains its shape for a very long time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源