论文标题

在原始雷达帧上用于在线对象检测的经常性CNN

A recurrent CNN for online object detection on raw radar frames

论文作者

Decourt, Colin, VanRullen, Rufin, Salle, Didier, Oberlin, Thomas

论文摘要

汽车雷达传感器为高级驾驶辅助系统(ADA)提供了有价值的信息。雷达可以可靠地估计与物体和相对速度的距离,而不管天气和光条件如何。然而,雷达传感器的分辨率低和巨大的物体形状变化。已证明利用时间信息(例如多个帧)有助于捕获对象的动态,因此有助于对象形状的变化。大多数时间雷达对象检测器都使用3D卷积来学习空间和时间信息。但是,这些方法通常是非毒性的,不适合实时应用。这项工作提出了记录,这是一种用于在线雷达对象检测的新的CNN架构。我们提出了一个端到端的可训练架构混合卷积和弯路,以学习连续框架之间的时空依赖性。我们的模型是因果关系,仅需要在弯曲的内存中编码的过去信息才能检测对象。我们的实验表明,在Rod2021和Carrada数据集中检测不同雷达表示(范围多普勒,范围角)中的对象的相关性和胜过最先进的模型,同时计算较差。

Automotive radar sensors provide valuable information for advanced driving assistance systems (ADAS). Radars can reliably estimate the distance to an object and the relative velocity, regardless of weather and light conditions. However, radar sensors suffer from low resolution and huge intra-class variations in the shape of objects. Exploiting the time information (e.g., multiple frames) has been shown to help to capture better the dynamics of objects and, therefore, the variation in the shape of objects. Most temporal radar object detectors use 3D convolutions to learn spatial and temporal information. However, these methods are often non-causal and unsuitable for real-time applications. This work presents RECORD, a new recurrent CNN architecture for online radar object detection. We propose an end-to-end trainable architecture mixing convolutions and ConvLSTMs to learn spatio-temporal dependencies between successive frames. Our model is causal and requires only the past information encoded in the memory of the ConvLSTMs to detect objects. Our experiments show such a method's relevance for detecting objects in different radar representations (range-Doppler, range-angle) and outperform state-of-the-art models on the ROD2021 and CARRADA datasets while being less computationally expensive.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源