论文标题

惯性传感器对齐的深度学习

Deep Learning for Inertial Sensor Alignment

论文作者

Freydin, Maxim, Sfaradi, Niv, Segol, Nimrod, Eweida, Areej, Or, Barak

论文摘要

精确对齐装有惯性传感器内部的固定移动设备对于导航,活动识别和其他应用非常重要。需要对设备安装角的准确估计来将惯性测量从传感器框架旋转到移动平台框架,以标准化测量并改善目标任务的性能。在这项工作中,提出了一种使用深神经网络(DNN)的数据驱动方法,以学习配备有惯性测量单元(IMU)并绑在汽车上的智能手机的偏航安装角。提出的模型仅使用来自IMU的加速度计和陀螺仪读数作为输入,与现有解决方案相比,不需要全球导航卫星系统(GNSS)的全局位置输入。为了以监督的方式训练模型,收集IMU数据以训练和验证,并以已知的偏航安装角安装的传感器进行验证,并通过将随机旋转在有界范围内应用于测量结果来生成一系列地面真实标签。对训练有素的模型进行了测试,其实际旋转的数据显示出与合成旋转相似的性能。训练有素的模型被部署在Android设备上,并实时评估以测试估计的偏航安装角的准确性。该模型显示出在5秒内的精度为8度,在27秒内找到4度的固定角度。进行了一个实验,将提出的模型与现有的现成解决方案进行比较。

Accurate alignment of a fixed mobile device equipped with inertial sensors inside a moving vehicle is important for navigation, activity recognition, and other applications. Accurate estimation of the device mounting angle is required to rotate the inertial measurement from the sensor frame to the moving platform frame to standardize measurements and improve the performance of the target task. In this work, a data-driven approach using deep neural networks (DNNs) is proposed to learn the yaw mounting angle of a smartphone equipped with an inertial measurement unit (IMU) and strapped to a car. The proposed model uses only the accelerometer and gyroscope readings from an IMU as input and, in contrast to existing solutions, does not require global position inputs from global navigation satellite systems (GNSS). To train the model in a supervised manner, IMU data is collected for training and validation with the sensor mounted at a known yaw mounting angle, and a range of ground truth labels is generated by applying a random rotation in a bounded range to the measurements. The trained model is tested on data with real rotations showing similar performance as with synthetic rotations. The trained model is deployed on an Android device and evaluated in real-time to test the accuracy of the estimated yaw mounting angle. The model is shown to find the mounting angle at an accuracy of 8 degrees within 5 seconds, and 4 degrees within 27 seconds. An experiment is conducted to compare the proposed model with an existing off-the-shelf solution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源