论文标题
使用视觉注意力进行合作飞行控制
Towards Cooperative Flight Control Using Visual-Attention
论文作者
论文摘要
在飞行控制过程中,人类飞行员与自主剂的合作实现了平行的自主权。我们提出了一个空中飞行系统,该系统促进了通过眼睛跟踪的飞行员与平行的端到端神经控制系统之间的合作。我们基于视觉的空气方向系统将因果关系连续深度神经网络模型与一个合作层相结合,以基于其注意力概况的感知差异,使飞行员和控制系统之间的平行自主权能够平行自治。通过通过VisualbackProp算法来计算网络的显着性图(特征重要性)来获得神经网络的注意力曲线,而人类的注意力概况是通过对人类飞行员的眼睛跟踪或受过训练的网络显着性图获得的。当飞行员和监护人的注意力概况对齐时,飞行员做出了控制决定。否则,航空公司进行干预并接管飞机的控制。我们表明,我们的基于注意力的空中任务系统可以平衡其参与飞行水平与飞行员的专业知识和关注之间的权衡。在由于信息超负荷而分心的情况下,监护系统在飞行员分心的情况下特别有效。我们演示了我们方法在使用固定翼飞机和使用四极管平台的硬件上导航飞行方案的有效性。
The cooperation of a human pilot with an autonomous agent during flight control realizes parallel autonomy. We propose an air-guardian system that facilitates cooperation between a pilot with eye tracking and a parallel end-to-end neural control system. Our vision-based air-guardian system combines a causal continuous-depth neural network model with a cooperation layer to enable parallel autonomy between a pilot and a control system based on perceived differences in their attention profiles. The attention profiles for neural networks are obtained by computing the networks' saliency maps (feature importance) through the VisualBackProp algorithm, while the attention profiles for humans are either obtained by eye tracking of human pilots or saliency maps of networks trained to imitate human pilots. When the attention profile of the pilot and guardian agents align, the pilot makes control decisions. Otherwise, the air-guardian makes interventions and takes over the control of the aircraft. We show that our attention-based air-guardian system can balance the trade-off between its level of involvement in the flight and the pilot's expertise and attention. The guardian system is particularly effective in situations where the pilot was distracted due to information overload. We demonstrate the effectiveness of our method for navigating flight scenarios in simulation with a fixed-wing aircraft and on hardware with a quadrotor platform.