论文标题

兰道因果动力三角理论

Landau Theory of Causal Dynamical Triangulations

论文作者

Benedetti, Dario

论文摘要

了解离散随机几何理论的连续限制是一个美丽但困难的挑战。在此视频中,我们在这里回顾了可以通过采用Landau方法来实现关键现象来获得因果动力学三角剖分(CDT)的见解。特别是,集中于两个维度和三个维度的情况,我们将表明空间切片体积的配置有效地扮演订单参数的作用,从而帮助我们了解CDT的相结构。此外,与CDT的数值模拟的一致性提供了暗示,该模型的有效田地理论生存在叶状性扩散下不变的理论空间中。在此类理论中,Horava-Lifshitz重力具有特殊的状态,是一种可扰动的可重新划分理论,而一般相对论则位于具有增强对称性的子空间中。为了达到其中的任何一个,可能需要微调CDT动作中的某些参数,或者从其某些概括中进行了其他参数。

Understanding the continuum limit of a theory of discrete random geometries is a beautiful but difficult challenge. In this optic, we review here the insights that can be obtained for Causal Dynamical Triangulations (CDT) by employing the Landau approach to critical phenomena. In particular, concentrating on the cases of two and three dimensions, we will make the case that the configuration of the volume of spatial slices effectively plays the role of an order parameter, helping us to understand the phase structure of CDT. Moreover, consistency with numerical simulations of CDT provides hints that the effective field theory of the model lives in the space of theories invariant under foliation-preserving diffeomorphisms. Among such theories, Horava-Lifshitz gravity has the special status of being a perturbatively renormalizable theory, while General Relativity sits in a subspace with enhanced symmetry. In order to reach either of them, one would likely need to fine tune some of the parameters in the CDT action, or additional ones from some generalization thereof.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源