论文标题
浆果般的摆锤
The Berry-Foucault Pendulum
论文作者
论文摘要
已知几何阶段在由于浆果曲率而引起的绒毛摆旋转和异常大厅效应(AHE)中都起着作用。在这里,我们表明,由Berry曲率引起的具有AHE的2D谐波振荡器的行为与福柯摆的表现完全一样:在两者中,振荡的平面都随时间旋转。旋转的摆构型增强了AHE,简化了其观察结果,并允许对浆果曲率进行高精度测量。我们还展示了非绝热性和非谐度性如何决定最大旋转角,并找到观测值的最佳条件。
The geometric phase is known to play a role both in the rotation of the Foucault pendulum and in the anomalous Hall effect (AHE) due to the Berry curvature. Here, we show that a 2D harmonic oscillator with AHE induced by Berry curvature behaves exactly like the Foucault pendulum: in both, the plane of the oscillations rotates with time. The rotating pendulum configuration enhances the AHE, simplifying its observation and allowing high-precision measurements of the Berry curvature. We also show how the non-adiabaticity and anharmonicity determine the maximal rotation angle and find the optimal conditions for the observations.