论文标题

与R-Inla的多元空间模型的贝叶斯推断

Bayesian Inference for Multivariate Spatial Models with R-INLA

论文作者

Palmí-Perales, Francisco, Gómez-Rubio, Virgilio, Bivand, Roger S, Cameletti, Michela, Rue, Håvard

论文摘要

科学界通常已经确定了用于空间数据分析的贝叶斯方法和软件。尽管空间模型广泛应用,但在现有文献中尚未广泛描述多元空间数据的分析。因此,本文的主要目的是证明R-INLA是一个方便的工具箱,用于分析不同类型的多元空间数据集。此外,通过分析三个公开可用的数据集来说明这一点。此外,提供了这些分析的详细信息和R代码,以举例说明如何使用R-INLA调整多元空间数据集。

Bayesian methods and software for spatial data analysis are generally now well established in the scientific community. Despite the wide application of spatial models, the analysis of multivariate spatial data using R-INLA has not been widely described in the existing literature. Therefore, the main objective of this article is to demonstrate that R-INLA is a convenient toolbox to analyse different types of multivariate spatial datasets. Additionally, this will be illustrated by analysing three datasets which are publicly available. Furthermore, the details and the R code of these analyses are provided to exemplify how to adjust multivariate spatial datasets with R-INLA.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源