论文标题

通过在表面多晶图上使用图神经网络对钢纳米的预测

Prediction of steel nanohardness by using graph neural networks on surface polycrystallinity maps

论文作者

Karimi, Kamran, Salmenjoki, Henri, Mulewska, Katarzyna, Kurpaska, Lukasz, Kosińska, Anna, Alava, Mikko, Papanikolaou, Stefanos

论文摘要

作为批量的机械性能,多晶金属中的纳米级硬度很大程度上取决于微观结构特征,这些特征被认为受到多晶的复杂特征的很大影响 - 即单个谷物方向和相邻的谷物特性。我们训练图形神经网络(GNN)模型,每个谷物中心位置均为图形节点,以评估纳米强调的低碳310s不锈钢(用Ni和Cr)表面的微机械响应的可预测性,完全基于表面多晶的表面,并由电子背胶质固定捕获,并被电子背胶粘剂捕获。晶粒尺寸分布范围在$ 1-100〜μ $ m之间,平均晶粒尺寸为$ 18〜μ $ m。 GNN模型在一组纳米力学负载 - 位置曲线上进行了训练,该曲线是从纳米识别测试获得的,随后被用于对各个深度的纳米硬度进行预测,唯一输入是谷物位置和方向。模型培训基于$ \ sim10^2 $硬度测量值的不合标准集,从而导致整体令人满意的性能。我们探索模型性能及其对各种结构/拓扑晶级描述符的依赖,例如晶粒尺寸和最近的邻居数量。类似的GNN模型框架可以用于快速,廉价的硬度估计,以指导详细的纳米构造实验,类似于世界勘探时代的制图工具开发。

As a bulk mechanical property, nanoscale hardness in polycrystalline metals is strongly dependent on microstructural features that are believed to be heavily influenced from complex features of polycrystallinity -- namely, individual grain orientations and neighboring grain properties. We train a graph neural network (GNN) model, with each grain center location being a graph node, to assess the predictability of micromechanical responses of nano-indented low-carbon 310S stainless steel (alloyed with Ni and Cr) surfaces, solely based on surface polycrystallinity, captured by electron backscatter diffraction maps. The grain size distribution ranges between $1-100~μ$m, with mean grain size at $18~μ$m. The GNN model is trained on a set of nanomechanical load-displacement curves, obtained from nanoindentation tests and is subsequently used to make predictions of nano-hardness at various depths, with sole input being the grain locations and orientations. Model training is based on a sub-standard set of $\sim10^2$ hardness measurements, leading to an overall satisfactory performance. We explore model performance and its dependence on various structural/topological grain-level descriptors, such as the grain size and number of nearest neighbors. Analogous GNN model frameworks may be utilized for quick, inexpensive hardness estimates, for guidance to detailed nanoindentation experiments, akin to cartography tool developments in the world exploration era.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源