论文标题
NADBENCHS-与自然灾害有关的机器学习任务的基准数据集编译
NADBenchmarks -- a compilation of Benchmark Datasets for Machine Learning Tasks related to Natural Disasters
论文作者
论文摘要
气候变化增加了全世界极端天气事件和自然灾害的强度,频率和持续时间。虽然对自然灾害的数据增加改善了该领域的机器学习范围(ML),但进展相对较慢。一种瓶颈是缺乏基准数据集,该数据集将使ML研究人员可以根据标准指标量化其进度。这篇简短论文的目的是探索与自然灾害有关的ML任务的基准数据集的状态,并根据灾难管理周期对其进行分类。我们编译了过去五年中引入的现有基准数据集的列表。我们提出了一个Web平台-NADBENCHSS-研究人员可以在其中搜索自然灾害的基准数据集,并且我们使用编译列表开发了此类平台的初步版本。本文旨在帮助研究人员找到基准数据集来培训其ML模型,并为他们提供可以贡献新基准数据集的主题的一般方向。
Climate change has increased the intensity, frequency, and duration of extreme weather events and natural disasters across the world. While the increased data on natural disasters improves the scope of machine learning (ML) in this field, progress is relatively slow. One bottleneck is the lack of benchmark datasets that would allow ML researchers to quantify their progress against a standard metric. The objective of this short paper is to explore the state of benchmark datasets for ML tasks related to natural disasters, categorizing them according to the disaster management cycle. We compile a list of existing benchmark datasets introduced in the past five years. We propose a web platform - NADBenchmarks - where researchers can search for benchmark datasets for natural disasters, and we develop a preliminary version of such a platform using our compiled list. This paper is intended to aid researchers in finding benchmark datasets to train their ML models on, and provide general directions for topics where they can contribute new benchmark datasets.