论文标题

使用扫描电子显微镜和过渡边缘传感器光谱仪,纳米级对集成电路的三维成像

Nanoscale Three-Dimensional Imaging of Integrated Circuits using a Scanning Electron Microscope and Transition-Edge Sensor Spectrometer

论文作者

Nakamura, Nathan, Szypryt, Paul, Dagel, Amber L., Alpert, Bradley K., Bennett, Douglas A., Doriese, W. Bertrand, Durkin, Malcolm, Fowler, Joseph W., Fox, Dylan T., Gard, Johnathon D., Goodner, Ryan N., Harris, J. Zachariah, Hilton, Gene C., Jimenez, Edward S., Kernen, Burke L., Larson, Kurt W., Levine, Zachary H., McArthur, Daniel, Morgan, Kelsey M., O'Neil, Galen C., Ortiz, Nathan J., Pappas, Christine G., Reintsema, Carl D., Schmidt, Daniel R., Schultz, Peter A., Thompson, Kyle R., Ullom, Joel N., Vale, Leila, Vaughan, Courtenay T., Walker, Christopher, Weber, Joel C., Wheeler, Jason W., Swetz, Daniel S.

论文摘要

X射线纳米学是对纳米级材料和结构表征的强大工具,但是由于X射线通量和斑点大小的竞争要求,难以实施。由于这种限制,最先进的纳米摄影主要在大型同步器设施中进行。我们提出了一种实验室规模的纳米学工具,该工具可以在更改常规断层扫描工具的局限性的同时,可实现纳米级的空间分辨率。该仪器结合了扫描电子显微镜(SEM)的电子束与超导过渡边缘传感器(TES)微氧计的精确的宽带X射线检测。电子束在远离感兴趣样品的金属目标中产生高度聚焦的X射线斑点,而TES光谱仪分离出具有高信噪比的光子。聚焦X射线斑点,能量分辨X射线检测和独特的系统几何形状的这种组合使纳米级,元素特定的X射线成像在紧凑的足迹中。这种X射线纳米摄影方法的概念概念可以通过成像在Cu-Sio2集成电路的6层中成像160 nm特征的成像证明,并讨论了通往更精细的分辨率和增强成像功能的途径。

X-ray nanotomography is a powerful tool for the characterization of nanoscale materials and structures, but is difficult to implement due to competing requirements on X-ray flux and spot size. Due to this constraint, state-of-the-art nanotomography is predominantly performed at large synchrotron facilities. We present a laboratory-scale nanotomography instrument that achieves nanoscale spatial resolution while changing the limitations of conventional tomography tools. The instrument combines the electron beam of a scanning electron microscope (SEM) with the precise, broadband X-ray detection of a superconducting transition-edge sensor (TES) microcalorimeter. The electron beam generates a highly focused X-ray spot in a metal target held micrometers away from the sample of interest, while the TES spectrometer isolates target photons with high signal-to-noise. This combination of a focused X-ray spot, energy-resolved X-ray detection, and unique system geometry enable nanoscale, element-specific X-ray imaging in a compact footprint. The proof-of-concept for this approach to X-ray nanotomography is demonstrated by imaging 160 nm features in three dimensions in 6 layers of a Cu-SiO2 integrated circuit, and a path towards finer resolution and enhanced imaging capabilities is discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源