论文标题
模块化:利用联合学习框架中的模块化
ModularFed: Leveraging Modularity in Federated Learning Frameworks
论文作者
论文摘要
最近,许多研究提议整合联邦学习(FL),以解决在对隐私敏感公司中使用机器学习的隐私问题。但是,可用框架的标准不再能够维持快速的进步,并阻碍了FL解决方案的整合,这在推进该领域时可能是突出的。在本文中,我们提出了一个以研究为中心的模块化框架,该框架解决了FL实施的复杂性以及在可用框架中缺乏适应性和可扩展性。我们提供了一个全面的体系结构,可以通过定义明确的协议来协助FL范围,以涵盖三个主要的FL范式:适应性的工作流,数据集发行和第三方应用程序支持。在此体系结构中,协议是严格定义该框架组件设计的蓝图,有助于其灵活性并增强其基础架构。此外,我们的协议旨在在FL中实现模块化,支持第三方插件架构和动态模拟器以及该领域中主要的内置数据分布到。此外,该框架支持在单个环境中包裹多种方法,以使诸如客户缺乏症,数据分布和网络延迟之类的FL问题一致地复制,这需要对FL技术的技术进行公平的比较。在我们的评估中,我们研究了解决三个主要FL领域的框架的适用性,包括用于资源监视和客户选择的基于统计的分布和基于模块化的方法。
Numerous research recently proposed integrating Federated Learning (FL) to address the privacy concerns of using machine learning in privacy-sensitive firms. However, the standards of the available frameworks can no longer sustain the rapid advancement and hinder the integration of FL solutions, which can be prominent in advancing the field. In this paper, we propose ModularFed, a research-focused framework that addresses the complexity of FL implementations and the lack of adaptability and extendability in the available frameworks. We provide a comprehensive architecture that assists FL approaches through well-defined protocols to cover three dominant FL paradigms: adaptable workflow, datasets distribution, and third-party application support. Within this architecture, protocols are blueprints that strictly define the framework's components' design, contribute to its flexibility, and strengthen its infrastructure. Further, our protocols aim to enable modularity in FL, supporting third-party plug-and-play architecture and dynamic simulators coupled with major built-in data distributors in the field. Additionally, the framework support wrapping multiple approaches in a single environment to enable consistent replication of FL issues such as clients' deficiency, data distribution, and network latency, which entails a fair comparison of techniques outlying FL technologies. In our evaluation, we examine the applicability of our framework addressing three major FL domains, including statistical distribution and modular-based approaches for resource monitoring and client selection.