论文标题
柏林V2X:来自多辆车和无线电访问技术的机器学习数据集
Berlin V2X: A Machine Learning Dataset from Multiple Vehicles and Radio Access Technologies
论文作者
论文摘要
无线通信及以后的无线通信的演变预计将依靠新机器学习(ML)的功能。这些可以从无线网络组件中实现积极的决策和行动,以维持服务质量(QoS)和用户体验。此外,将出现在车辆和工业通信领域的新用例。特别是在车辆通信领域,车辆到所有(V2X)方案将从此类进步中受益。考虑到这一点,我们进行了一项详细的测量活动,为多种基于ML的研究铺平了道路。最终的数据集为蜂窝(带有两个不同的操作员)和Sidelink无线电访问技术提供了各种城市环境的GPS无线测量,从而使对V2X的各种不同的研究。将数据集标记并用高时间分辨率进行采样。此外,我们将数据提供所有必要信息,以支持新研究人员的入门。我们对数据提供了最初的分析,显示了ML需要克服的一些挑战以及ML可以利用的功能,以及有关潜在研究的一些提示。
The evolution of wireless communications into 6G and beyond is expected to rely on new machine learning (ML)-based capabilities. These can enable proactive decisions and actions from wireless-network components to sustain quality-of-service (QoS) and user experience. Moreover, new use cases in the area of vehicular and industrial communications will emerge. Specifically in the area of vehicle communication, vehicle-to-everything (V2X) schemes will benefit strongly from such advances. With this in mind, we have conducted a detailed measurement campaign that paves the way to a plethora of diverse ML-based studies. The resulting datasets offer GPS-located wireless measurements across diverse urban environments for both cellular (with two different operators) and sidelink radio access technologies, thus enabling a variety of different studies towards V2X. The datasets are labeled and sampled with a high time resolution. Furthermore, we make the data publicly available with all the necessary information to support the onboarding of new researchers. We provide an initial analysis of the data showing some of the challenges that ML needs to overcome and the features that ML can leverage, as well as some hints at potential research studies.