论文标题

实时学习有效跨皮质层次结构的重新注射

Learning efficient backprojections across cortical hierarchies in real time

论文作者

Max, Kevin, Kriener, Laura, García, Garibaldi Pineda, Nowotny, Thomas, Jaras, Ismael, Senn, Walter, Petrovici, Mihai A.

论文摘要

皮质中的感觉处理和学习模型需要有效地将信用分配给所有领域的突触。在深度学习中,一个已知的解决方案是误差反向传播,但是它需要从饲料前进到反馈路径的生物学上难以置信的重量转运。 我们引入了无用的对准学习(PAL),这是一种可爱的方法,可以学习分层皮质层次结构中的有效反馈权重。这是通过利用在生物物理系统中自然发现的噪声来实现的。在我们的动态系统中,所有权重均以始终的可塑性同时学习,并且仅使用本地可用于突触的信息。我们的方法是完全不含相位的(没有前向和向后通过或分阶段学习),并且可以在多层皮质层次结构之间有效地误差传播,同时保持生物学上合理的信号传输和学习。 我们的方法适用于广泛的模型,并改进了先前已知的生物学上合理的信用分配方式:与随机的突触反馈相比,它可以用更少的神经元来解决复杂的任务,并学习更有用的潜在表示。我们使用带有前瞻性编码的皮质微电路模型在各种分类任务上证明了这一点。

Models of sensory processing and learning in the cortex need to efficiently assign credit to synapses in all areas. In deep learning, a known solution is error backpropagation, which however requires biologically implausible weight transport from feed-forward to feedback paths. We introduce Phaseless Alignment Learning (PAL), a bio-plausible method to learn efficient feedback weights in layered cortical hierarchies. This is achieved by exploiting the noise naturally found in biophysical systems as an additional carrier of information. In our dynamical system, all weights are learned simultaneously with always-on plasticity and using only information locally available to the synapses. Our method is completely phase-free (no forward and backward passes or phased learning) and allows for efficient error propagation across multi-layer cortical hierarchies, while maintaining biologically plausible signal transport and learning. Our method is applicable to a wide class of models and improves on previously known biologically plausible ways of credit assignment: compared to random synaptic feedback, it can solve complex tasks with less neurons and learn more useful latent representations. We demonstrate this on various classification tasks using a cortical microcircuit model with prospective coding.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源