论文标题
具有阳性比二角分解和混合多个正交多项式的有界带矩阵的光谱理论
Spectral theory for bounded banded matrices with positive bidiagonal factorization and mixed multiple orthogonal polynomials
论文作者
论文摘要
振荡矩阵的光谱和分解特性导致有界带矩阵的光谱定理,该矩阵的光谱定理在混合的多个正交多发束的序列方面接受了阳性的双胞体分解,相对于集合的阳性Lebesgue-stieltjes测量。给出了具有相应精度程度的混合多个高斯正交公式。
Spectral and factorization properties of oscillatory matrices leads to a spectral Favard theorem for bounded banded matrices, that admit a positive bidiagonal factorization, in terms of sequences of mixed multiple orthogonal polynomials with respect to a set positive Lebesgue-Stieltjes measures. A mixed multiple Gauss quadrature formula with corresponding degrees of precision is given.