论文标题
对抗攻击检测的多头不确定性推断
Multi-head Uncertainty Inference for Adversarial Attack Detection
论文作者
论文摘要
深度神经网络(DNN)对受到错误预测的对抗攻击敏感,并且容易受到微小扰动的影响。近年来已经开发了各种方法,包括对抗性防御和不确定性推理(UI),以克服对抗性攻击。在本文中,我们提出了用于检测对抗攻击示例的多头不确定性推理(MH-UI)框架。我们采用具有多个预测头(即分类器)的多头体系结构,以从DNN中的不同深度获得预测,并为UI介绍浅信息。使用在不同深度处的独立头,假定归一化的预测遵循相同的Dirichlet分布,我们逐步匹配它的分布参数。对抗性攻击带来的认知不确定性将反映并放大分布。实验结果表明,所提出的MH-UI框架可以胜过具有不同设置的对抗攻击检测任务中所有引用的UI方法。
Deep neural networks (DNNs) are sensitive and susceptible to tiny perturbation by adversarial attacks which causes erroneous predictions. Various methods, including adversarial defense and uncertainty inference (UI), have been developed in recent years to overcome the adversarial attacks. In this paper, we propose a multi-head uncertainty inference (MH-UI) framework for detecting adversarial attack examples. We adopt a multi-head architecture with multiple prediction heads (i.e., classifiers) to obtain predictions from different depths in the DNNs and introduce shallow information for the UI. Using independent heads at different depths, the normalized predictions are assumed to follow the same Dirichlet distribution, and we estimate distribution parameter of it by moment matching. Cognitive uncertainty brought by the adversarial attacks will be reflected and amplified on the distribution. Experimental results show that the proposed MH-UI framework can outperform all the referred UI methods in the adversarial attack detection task with different settings.