论文标题

分布鲁棒性界限概括错误

Distributional Robustness Bounds Generalization Errors

论文作者

Wang, Shixiong, Wang, Haowei

论文摘要

贝叶斯方法,分布强大的优化方法和正则化方法是可信赖的机器学习的三个支柱,可以打击分布不确定性,例如,与真实的潜在分布相比,经验分布的不确定性。本文研究了三个框架之间的联系,尤其是探讨了为什么这些框架往往会有较小的概括错误。具体而言,首先,我们建议对“分布鲁棒性”的定量定义,提出了“鲁棒性测量”的概念,并在分布稳健优化中形成了几个哲学概念。其次,我们表明贝叶斯方法在大约正确的(PAC)意义上在分布上具有鲁棒性。此外,通过在贝叶斯非参数中构建类似于迪利奇的过程,可以证明任何正规的经验风险最小化方法都等同于贝叶斯方法。第三,我们表明,可以使用名义分布的分布不确定性和这些机器学习模型的稳健性测量的分布不确定性来表征机器学习模型的概括错误,这是对绑定通用错误的一种新观点,因此,解释了分布强大的机器学习模型,贝叶斯模型和正常化模型在统一的方式中趋于较小的通用性。

Bayesian methods, distributionally robust optimization methods, and regularization methods are three pillars of trustworthy machine learning combating distributional uncertainty, e.g., the uncertainty of an empirical distribution compared to the true underlying distribution. This paper investigates the connections among the three frameworks and, in particular, explores why these frameworks tend to have smaller generalization errors. Specifically, first, we suggest a quantitative definition for "distributional robustness", propose the concept of "robustness measure", and formalize several philosophical concepts in distributionally robust optimization. Second, we show that Bayesian methods are distributionally robust in the probably approximately correct (PAC) sense; in addition, by constructing a Dirichlet-process-like prior in Bayesian nonparametrics, it can be proven that any regularized empirical risk minimization method is equivalent to a Bayesian method. Third, we show that generalization errors of machine learning models can be characterized using the distributional uncertainty of the nominal distribution and the robustness measures of these machine learning models, which is a new perspective to bound generalization errors, and therefore, explain the reason why distributionally robust machine learning models, Bayesian models, and regularization models tend to have smaller generalization errors in a unified manner.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源