论文标题

使用分层对二元结果进行预后协变量调整

Prognostic Covariate Adjustment for Binary Outcomes Using Stratification

论文作者

Vanderbeek, Alyssa M., Ross, Jessica L., Miller, David P., Schuler, Alejandro

论文摘要

将历史数据纳入随机临床试验(RCT)中的协变量调整和方法提供了增加试验能力的机会。我们将这些方法结合起来,以基于Cochran-Mantel-Haenszel(CMH)测试的边际风险比(RR)的Cochran-Mantel-Haenszel(CMH)测试来分析RCT。在Procova-CMH中,受试者在单个预后的协变量上分层,反映了他们对控制治疗的预测结果(例如安慰剂)。该预后分数是根据基线协变量通过对历史数据训练的模型生成的。我们提出了两个仅依赖于从观察到的历史结果和预后模型获得的值的渐近采样方差的闭合形式的前瞻性估计器。重要的是,这些估计器可用于在试验计划期间为样本量提供信息。 Procova-CMH展示了I型错误控制和适当的渐近覆盖范围,以进行有效推断。与其他协变量调整方法一样,与未经调整(未分层的)CMH分析相比,Procova-CMH可以减少治疗效果估计的方差。除了统计方法外,还提供了阿尔茨海默氏病的模拟和案例研究以证明表现。结果表明,Procova-CMH可以提供功率增益,可用于进行较小的试验。

Covariate adjustment and methods of incorporating historical data in randomized clinical trials (RCTs) each provide opportunities to increase trial power. We unite these approaches for the analysis of RCTs with binary outcomes based on the Cochran-Mantel-Haenszel (CMH) test for marginal risk ratio (RR). In PROCOVA-CMH, subjects are stratified on a single prognostic covariate reflective of their predicted outcome on the control treatment (e.g. placebo). This prognostic score is generated based on baseline covariates through a model trained on historical data. We propose two closed-form prospective estimators for the asymptotic sampling variance of the log RR that rely only on values obtainable from observed historical outcomes and the prognostic model. Importantly, these estimators can be used to inform sample size during trial planning. PROCOVA-CMH demonstrates type I error control and appropriate asymptotic coverage for valid inference. Like other covariate adjustment methods, PROCOVA-CMH can reduce the variance of the treatment effect estimate when compared to an unadjusted (unstratified) CMH analysis. In addition to statistical methods, simulations and a case study in Alzheimer's Disease are given to demonstrate performance. Results show that PROCOVA-CMH can provide a gain in power, which can be used to conduct smaller trials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源