论文标题

通过控制无关句子的混杂效应来提高抽象性摘要的忠诚

Improving Faithfulness of Abstractive Summarization by Controlling Confounding Effect of Irrelevant Sentences

论文作者

Ghoshal, Asish, Einolghozati, Arash, Arun, Ankit, Li, Haoran, Yu, Lili, Gor, Vera, Mehdad, Yashar, Yih, Scott Wen-tau, Celikyilmaz, Asli

论文摘要

缺乏事实正确性是一个问题,尽管它们在产生看似流利的摘要方面取得了令人印象深刻的进展,但仍困扰着最先进的摘要系统。在本文中,我们表明,事实不一致可能是由输入文本无关的部分引起的,这些文本是混杂的。为此,我们利用因果效应的信息理论度量来量化混杂的数量并精确量化它们如何影响汇总性能。基于从我们的理论结果中得出的见解,我们设计了一个简单的多任务模型,以在可用时利用人类宣布的相关句子来控制这种混杂。至关重要的是,我们对数据分布进行了原则性的特征,在这种情况下,这种混杂可能很大,因此需要使用人类注释的相关句子来产生事实摘要。我们的方法将忠实分数提高了20 \%,而在Answersumm \ citep {fabbri2021answersumm上的强大基线}的对话摘要数据集则缺乏忠诚是一个重要的问题,这是一个重要的问题。我们的最佳方法取得了最高的忠诚得分,同时还可以在鲁日和流星等标准指标上取得最先进的结果。我们通过人类评估证实了这些改进。

Lack of factual correctness is an issue that still plagues state-of-the-art summarization systems despite their impressive progress on generating seemingly fluent summaries. In this paper, we show that factual inconsistency can be caused by irrelevant parts of the input text, which act as confounders. To that end, we leverage information-theoretic measures of causal effects to quantify the amount of confounding and precisely quantify how they affect the summarization performance. Based on insights derived from our theoretical results, we design a simple multi-task model to control such confounding by leveraging human-annotated relevant sentences when available. Crucially, we give a principled characterization of data distributions where such confounding can be large thereby necessitating the use of human annotated relevant sentences to generate factual summaries. Our approach improves faithfulness scores by 20\% over strong baselines on AnswerSumm \citep{fabbri2021answersumm}, a conversation summarization dataset where lack of faithfulness is a significant issue due to the subjective nature of the task. Our best method achieves the highest faithfulness score while also achieving state-of-the-art results on standard metrics like ROUGE and METEOR. We corroborate these improvements through human evaluation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源