论文标题

化学实验室自动化通过受限的任务和运动计划

Chemistry Lab Automation via Constrained Task and Motion Planning

论文作者

Yoshikawa, Naruki, Li, Andrew Zou, Darvish, Kourosh, Zhao, Yuchi, Xu, Haoping, Kuramshin, Artur, Aspuru-Guzik, Alán, Garg, Animesh, Shkurti, Florian

论文摘要

化学家需要在实验室中进行许多费力且耗时的实验,以发现和理解新材料的特性。为了支持和加速这一过程,我们提出了一个自主执行化学实验的机器人框架。我们的框架收到了化学实验的高级抽象描述,感知实验室工作空间,并自主计划多步骤和动作。机器人与广泛的实验室设备进行互动,并执行生成的计划。我们方法的关键组成部分是使用PDDLStream求解器的任务和运动计划受到限制。通过引入受限的运动计划者来防止碰撞和溢出。我们的计划框架可以采用实施的动作和实验工具进行不同的实验。我们证明了我们的框架对各种材料的浇注技能的实用性以及材料合成的两个基本化学实验:溶解度和重结晶。

Chemists need to perform many laborious and time-consuming experiments in the lab to discover and understand the properties of new materials. To support and accelerate this process, we propose a robot framework for manipulation that autonomously performs chemistry experiments. Our framework receives high-level abstract descriptions of chemistry experiments, perceives the lab workspace, and autonomously plans multi-step actions and motions. The robot interacts with a wide range of lab equipment and executes the generated plans. A key component of our method is constrained task and motion planning using PDDLStream solvers. Preventing collisions and spillage is done by introducing a constrained motion planner. Our planning framework can conduct different experiments employing implemented actions and lab tools. We demonstrate the utility of our framework on pouring skills for various materials and two fundamental chemical experiments for materials synthesis: solubility and recrystallization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源