论文标题

嫁接拉普拉斯和高斯分布:一种新的差异隐私噪声机制

Grafting Laplace and Gaussian distributions: A new noise mechanism for differential privacy

论文作者

Muthukrishnan, Gokularam, Kalyani, Sheetal

论文摘要

差异隐私的框架可以保护个人的隐私,同时发布有关聚集数据的查询响应。在这项工作中,引入了一种新的噪声添加机制,以从类似于中心的拉普拉斯的混合密度来采样噪声,并在尾部中的高斯(Gaussian)采样。该密度具有更清晰的中心和轻度尾部的尾巴,具有两种分布的最佳特征。我们从理论上分析了提出的机制,并在一个维度上得出了必要和足够的条件,并在高维度下有足够的条件来保证该机制($ε$,$δ$) - 差异隐私。与其他现有机制相比,数值模拟证实了所提出的机制的功效,从而在隐私和准确性之间取得了更好的权衡。

The framework of differential privacy protects an individual's privacy while publishing query responses on congregated data. In this work, a new noise addition mechanism for differential privacy is introduced where the noise added is sampled from a hybrid density that resembles Laplace in the centre and Gaussian in the tail. With a sharper centre and light, sub-Gaussian tail, this density has the best characteristics of both distributions. We theoretically analyze the proposed mechanism, and we derive the necessary and sufficient condition in one dimension and a sufficient condition in high dimensions for the mechanism to guarantee ($ε$,$δ$)-differential privacy. Numerical simulations corroborate the efficacy of the proposed mechanism compared to other existing mechanisms in achieving a better trade-off between privacy and accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源