论文标题
从给定的一组素数产生的无平方数字上
On square-free numbers generated from given sets of primes
论文作者
论文摘要
令$ x $为正实数,而$ \ Mathcal {p} \ subset [2,λ(x)] $是一组素数,其中$λ(x)\ inω(x^\ varepsilon)$是单个单调的单调,以$ \ varepsilon \ in(0,1,1,1)$提高函数。我们检查$ q _ {\ Mathcal {p}}(x)$,其中$ q _ {\ MathCal {p}}(x)$是集合的元素计数,其中包含那些不超过的无正方形整数,这些整数小于$ x $,仅由$ x $划分,并且仅由$ \ nathcal of nathcal c}分开。
Let $x$ be a positive real number, and $\mathcal{P} \subset [2,λ(x)]$ be a set of primes, where $λ(x) \in Ω(x^\varepsilon)$ is a monotone increasing function with $\varepsilon \in (0,1)$. We examine $Q_{\mathcal{P}}(x)$, where $Q_{\mathcal{P}}(x)$ is the element count of the set containing those positive square-free integers, which are smaller than-, or equal to $x$, and which are only divisible by the elements of $\mathcal{P}$.