论文标题
宇宙几何的整合系统
Integrable systems in cosymplectic geometry
论文作者
论文摘要
由时间依赖性的哈密顿动力学的动机,我们扩展了阿诺德·卢维尔(Arnold-Liouville)的概念以及哈密顿系统在符号歧管上的非共同性的概念。我们证明了在宇宙歧管上进行评估和REEB向量领域的非共同性的变体,并提供了固定动作角度变量的构造。
Motivated by the time-dependent Hamiltonian dynamics, we extend the notion of Arnold-Liouville and noncommutative integrability of Hamiltonian systems on symplectic manifolds to that on cosymplectic manifolds. We prove a variant of the non-commutative integrability for evaluation and Reeb vector fields on cosymplectic manifolds and provide a construction of cosymplectic action-angle variables.