论文标题

使用GAN进行合成数据扩展,以改进自动化视觉检查

Synthetic Data Augmentation Using GAN For Improved Automated Visual Inspection

论文作者

Rožanec, Jože M., Zajec, Patrik, Theodoropoulos, Spyros, Koehorst, Erik, Fortuna, Blaž, Mladenić, Dunja

论文摘要

质量控制是制造公司执行的至关重要的活动,以确保其产品符合要求和规格。人工智能模型的引入可以自动化视觉质量检查,加快检查过程并确保在相同的标准下对所有产品进行评估。在这项研究中,我们比较受监督和无监督的缺陷检测技术,并探索数据增强技术,以减轻自动视觉检查背景下的数据不平衡。此外,我们使用生成的对抗网络进行数据增强来增强分类器的歧视性能。我们的结果表明,最新的无监督缺陷检测与监督模型的性能不符,但可用于将标签工作量减少超过50%。此外,考虑到基于GAN的数据生成的AUC ROC得分等于或高于0,9898的数据生成,即使仅通过仅留下25%的图像表示有缺陷的产品来增加数据集不平衡,也达到了最佳分类性能。我们通过Philips Consumer Lifestyle BV提供的实际数据进行了研究。

Quality control is a crucial activity performed by manufacturing companies to ensure their products conform to the requirements and specifications. The introduction of artificial intelligence models enables to automate the visual quality inspection, speeding up the inspection process and ensuring all products are evaluated under the same criteria. In this research, we compare supervised and unsupervised defect detection techniques and explore data augmentation techniques to mitigate the data imbalance in the context of automated visual inspection. Furthermore, we use Generative Adversarial Networks for data augmentation to enhance the classifiers' discriminative performance. Our results show that state-of-the-art unsupervised defect detection does not match the performance of supervised models but can be used to reduce the labeling workload by more than 50%. Furthermore, the best classification performance was achieved considering GAN-based data generation with AUC ROC scores equal to or higher than 0,9898, even when increasing the dataset imbalance by leaving only 25\% of the images denoting defective products. We performed the research with real-world data provided by Philips Consumer Lifestyle BV.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源