论文标题
COOLISTANET用于逼真的视频风格转移
ColoristaNet for Photorealistic Video Style Transfer
论文作者
论文摘要
逼真的风格转移旨在将图像的艺术风格转移到输入图像或视频中,同时保持光真相。在本文中,我们认为这是现有算法中的摘要统计匹配方案,导致了不现实的风格化。为了避免采用流行的革兰事损失,我们提出了一个自我监督的样式转移框架,其中包含样式拆卸零件和样式恢复部分。样式拆卸网络删除了原始图像样式,样式恢复网络以监督的方式恢复了图像样式。同时,为了解决当前特征转换方法中的问题,我们提出了分解实例归一化以将特征转换分解为样式的美白和retylization。它在Coloristanet上运作良好,可以在保持光真相的同时有效地传递图像样式。为了确保时间连贯性,我们还将光流方法和弯曲液融合到嵌入上下文信息中。实验表明,与最先进的算法相比,Coloristanet可以实现更好的风格化效果。
Photorealistic style transfer aims to transfer the artistic style of an image onto an input image or video while keeping photorealism. In this paper, we think it's the summary statistics matching scheme in existing algorithms that leads to unrealistic stylization. To avoid employing the popular Gram loss, we propose a self-supervised style transfer framework, which contains a style removal part and a style restoration part. The style removal network removes the original image styles, and the style restoration network recovers image styles in a supervised manner. Meanwhile, to address the problems in current feature transformation methods, we propose decoupled instance normalization to decompose feature transformation into style whitening and restylization. It works quite well in ColoristaNet and can transfer image styles efficiently while keeping photorealism. To ensure temporal coherency, we also incorporate optical flow methods and ConvLSTM to embed contextual information. Experiments demonstrates that ColoristaNet can achieve better stylization effects when compared with state-of-the-art algorithms.