论文标题

通过傅立叶变换上的非交互源模拟

On Non-Interactive Source Simulation via Fourier Transform

论文作者

Shirani, Farhad, Heidari, Mohsen

论文摘要

考虑了非相互作用源模拟(NIS)方案。在这种情况下,一对分布式代理Alice和Bob观察了基于关节分配$ p_ {x,y} $生成的分布式二进制二进制二进制内存源$(x^d,y^d)$。代理商希望产生一对离散的随机变量$(u_d,v_d)$,带有联合分布$ p_ {u_d,v_d} $,以便$ p_ {u_d,v_d} $收敛到总变量距离,总变量距离为目标$ q_ {u q_ {u,v} $,因为输入块bloves bloxplengt $ d $ d $ d $ demptty asmptty asmpttoty asmpttoty asmpttoty asmpttoty asmppt asmpttoty asmpptottothy asmpttottothy asmptottoty。内边界和外部边界是在分布集$ q_ {u,v} $上获得的,可以在给定输入分布$ p_ {x,y} $的情况下产生。为此,提供了从一组分布组中的二主映射$ q_ {u,v} $到星形串联集合的结合。通过利用离散傅立叶分析的证明技术以及一种新颖的随机舍入技术,为这些星形凸套装中的每一个都得出了内部和外部边界,并颠倒上述的生物映射,从$ q_ {u,v} $和$ p_ {x,y} $的$ q_ {u,v e}的$ q_ {u,v e}的$ q_ {U, $ p_ {x,y} $。界限适用于输出字母$ \ MATHCAL {U} $和$ \ MATHCAL {V} $具有任意有限大小的NIS情况。在二进制输出字母的情况下,外部结合恢复了以前最著名的外部界限。

The non-interactive source simulation (NISS) scenario is considered. In this scenario, a pair of distributed agents, Alice and Bob, observe a distributed binary memoryless source $(X^d,Y^d)$ generated based on joint distribution $P_{X,Y}$. The agents wish to produce a pair of discrete random variables $(U_d,V_d)$ with joint distribution $P_{U_d,V_d}$, such that $P_{U_d,V_d}$ converges in total variation distance to a target distribution $Q_{U,V}$ as the input blocklength $d$ is taken to be asymptotically large. Inner and outer bounds are obtained on the set of distributions $Q_{U,V}$ which can be produced given an input distribution $P_{X,Y}$. To this end, a bijective mapping from the set of distributions $Q_{U,V}$ to a union of star-convex sets is provided. By leveraging proof techniques from discrete Fourier analysis along with a novel randomized rounding technique, inner and outer bounds are derived for each of these star-convex sets, and by inverting the aforementioned bijective mapping, necessary and sufficient conditions on $Q_{U,V}$ and $P_{X,Y}$ are provided under which $Q_{U,V}$ can be produced from $P_{X,Y}$. The bounds are applicable in NISS scenarios where the output alphabets $\mathcal{U}$ and $\mathcal{V}$ have arbitrary finite size. In case of binary output alphabets, the outer-bound recovers the previously best-known outer-bound.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源