论文标题
反转编号上的问题,证明和争议
Problems, proofs, and disproofs on the inversion number
论文作者
论文摘要
Digraph $ d $中的集合$ x $顶点的{\ it反转}在于逆转$ d \ langle x \ rangle $的所有弧的方向。由$ {\ rm Inv}(d)$表示定向图$ d $的{\ it反转编号},是将$ d $转换为acycclic的图形所需的最小反转数。在本文中,我们研究了许多涉及定向图的反演数量的问题。首先,我们在$ {\ rm Inv}(n)$上给出界限,这是订单$ n $的定向图的最大反演数。我们显示$ n- \ Mathcal {O}(\ sqrt {n \ log n})\ \ leq \ {\ rm Inv}(n)\ \ \ leq \ n- \ n- \ lceil \ log \ log(n+1)\ rceil $。其次,我们反驳了Bang-Jensen等人的猜想。 asserting that, for every pair of oriented graphs $L$ and $R$, we have ${\rm inv}(L\Rightarrow R) ={\rm inv}(L) + {\rm inv}(R)$, where $L\Rightarrow R$ is the oriented graph obtained from the disjoint union of $L$ and $R$ by adding all arcs from $L$ to $ r $。 Finally, we investigate whether, for all pairs of positive integers $k_1,k_2$, there exists an integer $f(k_1,k_2)$ such that if $D$ is an oriented graph with ${\rm inv}(D) \geq f(k_1,k_2)$ then there is a partition $(V_1, V_2)$ of $V(D)$ such that ${\rm Inv}(d \ langle v_i \ rangle)\ geq k_i $ for $ i = 1,2 $。我们证明存在$ f(1,k)$,所有正整数$ k $的$ f(1,k)\ leq k+10 $。此外,我们表明,当考虑到方向的图形被限制为锦标赛时,所有对整数$ k_1,k_2 $都存在$ f(k_1,k_2)$。
The {\it inversion} of a set $X$ of vertices in a digraph $D$ consists in reversing the direction of all arcs of $D\langle X\rangle$. The {\it inversion number} of an oriented graph $D$, denoted by ${\rm inv}(D)$, is the minimum number of inversions needed to transform $D$ into an acyclic oriented graph. In this paper, we study a number of problems involving the inversion number of oriented graphs. Firstly, we give bounds on ${\rm inv}(n)$, the maximum of the inversion numbers of the oriented graphs of order $n$. We show $n - \mathcal{O}(\sqrt{n\log n}) \ \leq \ {\rm inv}(n) \ \leq \ n - \lceil \log (n+1) \rceil$. Secondly, we disprove a conjecture of Bang-Jensen et al. asserting that, for every pair of oriented graphs $L$ and $R$, we have ${\rm inv}(L\Rightarrow R) ={\rm inv}(L) + {\rm inv}(R)$, where $L\Rightarrow R$ is the oriented graph obtained from the disjoint union of $L$ and $R$ by adding all arcs from $L$ to $R$. Finally, we investigate whether, for all pairs of positive integers $k_1,k_2$, there exists an integer $f(k_1,k_2)$ such that if $D$ is an oriented graph with ${\rm inv}(D) \geq f(k_1,k_2)$ then there is a partition $(V_1, V_2)$ of $V(D)$ such that ${\rm inv}(D\langle V_i\rangle) \geq k_i$ for $i=1,2$. We show that $f(1,k)$ exists and $f(1,k)\leq k+10$ for all positive integers $k$. Further, we show that $f(k_1,k_2)$ exists for all pairs of positive integers $k_1,k_2$ when the oriented graphs in consideration are restricted to be tournaments.