论文标题
Manin猜想用于编码的统计前杂种歧管,超立方体关系和动机Galois组
Manin conjecture for statistical pre-Frobenius manifolds, hypercube relations and motivic Galois group in coding
论文作者
论文摘要
本文通过(算术)代数几何和类别理论的角度发展,信息的几何形状。 First, we describe in the terms of Eilenberg--Moore algebras over a Giry monad, the collection $Cap_n$ of all probability distributions on the measurable space $(Ω_n, \mathcal{A})$ (where $Ω$ is discrete with $n$ issues) and it turns out that there exists an embedding relation of Segre type among the product of $Cap_n$'s.我们揭示了这些类型的嵌入的隐藏对称性,并表明存在一个超纤维关系。其次,我们表明,在指数统计歧管的情况下,Manin猜想(最初定义了有关FANO品种的Diophantine几何形状)是正确的。第三,我们介绍了括号的编织物($ \ Mathbf {mpab} $)的修改版本,该版本构成了代码校正中的关键工具。此修改版本$ \ Mathbf {MPAB} $提出了在传输过程中可能发生的所有类型错误。我们表明,标准的括号辫子$ \ mathbf {pab} $形成$ \ mathbf {mpab} $的完整子类别。我们讨论了Grothendieck-TeichMüllerGroup与修改后的辫子有关的作用。最后,我们证明了动机Galois组包含在自动形态$ aut中(\ wideHat {\ Mathbf {mpab}})。$我们通过提出一个关于理性点,交换性的穆法循环和信息几何的开放问题来得出结论。
This article develops, via the perspective of (arithmetic) algebraic geometry and category theory, different aspects of geometry of information. First, we describe in the terms of Eilenberg--Moore algebras over a Giry monad, the collection $Cap_n$ of all probability distributions on the measurable space $(Ω_n, \mathcal{A})$ (where $Ω$ is discrete with $n$ issues) and it turns out that there exists an embedding relation of Segre type among the product of $Cap_n$'s. We unravel hidden symmetries of these type of embeddings and show that there exists a hypercubic relation. Secondly, we show that the Manin conjecture -- initially defined concerning the diophantine geometry of Fano varieties -- is true in the case of exponential statistical manifolds, defined over a discrete sample space. Thirdly, we introduce a modified version of the parenthesised braids ($\mathbf{mPaB}$), which forms a key tool in code-correction. This modified version $\mathbf{mPaB}$ presents all types of mistakes that could occur during a transmission process. We show that the standard parenthesised braids $\mathbf{PaB}$ form a full subcategory of $\mathbf{mPaB}$. We discuss the role of the Grothendieck--Teichmüller group in relation to the modified parenthesised braids. Finally, we prove that the motivic Galois group is contained in the automorphism $Aut(\widehat{\mathbf{mPaB}}).$ We conclude by presenting an open question concerning rational points, Commutative Moufang Loops and information geometry.