论文标题
标准紧凑型克利福德 - 克莱因形式和谎言代数分解
Standard compact Clifford-Klein forms and Lie algebra decompositions
论文作者
论文摘要
我们发现,在onishchik的意义上,这些三元组不是代数分解的假设,与标准的紧凑型克利福德 - 克莱因形式相对应的谎言代数的三元组分解之间的关系。这使我们能够找到简单的真实谎言组的新类别的同质空间,这些空间不接受标准的紧凑型克利福德 - 克莱因形式。特别是,我们表明,简单的真实谎言代数的适当的R-Egrangular子代数永远不会产生均匀的空间,这些空间接收紧凑的标准Cliffrod-Klein形式。
We find relations between real root decompositions of triples of Lie algebras corresponding to standard compact Clifford-Klein forms, under the assumption that these triples are not Lie algebra decompositions in the sense of Onishchik. This enables us to find new classes of homogeneous spaces of simple real Lie groups which do not admit standard compact Clifford-Klein forms. In particular, we show that proper R-regular subalgebras of simple real Lie algebras never generate homogeneous spaces which admit compact standard Cliffrod-Klein forms.