论文标题

$ l_ {1} $ - 矢量值Banach代数的属性

$L_{1}$- Properties of vector-valued Banach algebras

论文作者

Aghakoochaki, Maryam, Rejali, Ali

论文摘要

令$ g $为本地紧凑型组,$ a $是标量字段$ \ mathbb {c} $上的通勤半完整的Banach代数。评估了不同类型的$ bse $ - Banach代数$ a $与Banach代数$ l^{1}(g,a)$之间的相关性。发现并批准$ m(g,a)= l^{1}(g,a)$,并且仅当$ g $是离散的。此外,给出了对矢量值量度代数的某些属性,因此$ m(g,a)$是卷积度量代数。

Let $G$ be a locally compact group and $A$ be a commutative semisimple Banach algebra over the scalar field $\mathbb{C}$. The correlation between different types of $BSE$- Banach algebras $A$, and the Banach algebras $L^{1}(G, A)$ are assessed. It is found and approved that $M(G, A) = L^{1}(G, A)$ if and only if $G$ is discrete. Furthermore, some properties of vector-valued measure algebras on groups are given, so that $M(G, A)$ is a convolution measure algebra.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源