论文标题

紧凑的神经辐射场的蒙版小波表示

Masked Wavelet Representation for Compact Neural Radiance Fields

论文作者

Rho, Daniel, Lee, Byeonghyeon, Nam, Seungtae, Lee, Joo Chan, Ko, Jong Hwan, Park, Eunbyung

论文摘要

神经辐射场(NERF)证明了神经渲染中基于坐标的神经表示(神经场或隐式神经表示)的潜力。但是,使用多层感知器(MLP)代表3D场景或对象需要巨大的计算资源和时间。最近有关于如何使用其他数据结构(例如网格或树木)来减少这些计算效率低下的研究。尽管表现出色,但明确的数据结构仍需要大量内存。在这项工作中,我们提出了一种减小尺寸的方法,而不会损害其他数据结构的优势。详细说明,我们建议在基于网格的神经场上使用小波变换。基于网格的神经场是用于快速收敛的,并且在高性能标准编解码器中已证明其效率的小波变换是为了提高网格的参数效率。此外,为了在保持重建质量的同时获得更高的网格系数稀疏性,我们提出了一种新型的可训练掩蔽方法。实验结果表明,非空间网格系数(例如小波系数)能够获得比空间网格系数更高的稀疏度,从而导致更紧凑的表示。借助我们提出的面具和压缩管道,我们在2 MB的记忆预算中实现了最先进的性能。我们的代码可在https://github.com/daniel03c1/masked_wavelet_nerf上找到。

Neural radiance fields (NeRF) have demonstrated the potential of coordinate-based neural representation (neural fields or implicit neural representation) in neural rendering. However, using a multi-layer perceptron (MLP) to represent a 3D scene or object requires enormous computational resources and time. There have been recent studies on how to reduce these computational inefficiencies by using additional data structures, such as grids or trees. Despite the promising performance, the explicit data structure necessitates a substantial amount of memory. In this work, we present a method to reduce the size without compromising the advantages of having additional data structures. In detail, we propose using the wavelet transform on grid-based neural fields. Grid-based neural fields are for fast convergence, and the wavelet transform, whose efficiency has been demonstrated in high-performance standard codecs, is to improve the parameter efficiency of grids. Furthermore, in order to achieve a higher sparsity of grid coefficients while maintaining reconstruction quality, we present a novel trainable masking approach. Experimental results demonstrate that non-spatial grid coefficients, such as wavelet coefficients, are capable of attaining a higher level of sparsity than spatial grid coefficients, resulting in a more compact representation. With our proposed mask and compression pipeline, we achieved state-of-the-art performance within a memory budget of 2 MB. Our code is available at https://github.com/daniel03c1/masked_wavelet_nerf.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源