论文标题
贝叶斯自适应随机对照试验中的协变量调整
Covariate Adjustment in Bayesian Adaptive Randomized Controlled Trials
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
In conventional randomized controlled trials, adjustment for baseline values of covariates known to be at least moderately associated with the outcome increases the power of the trial. Recent work has shown particular benefit for more flexible frequentist designs, such as information adaptive and adaptive multi-arm designs. However, covariate adjustment has not been characterized within the more flexible Bayesian adaptive designs, despite their growing popularity. We focus on a subclass of these which allow for early stopping at an interim analysis given evidence of treatment superiority. We consider both collapsible and non-collapsible estimands, and show how to obtain posterior samples of marginal estimands from adjusted analyses. We describe several estimands for three common outcome types. We perform a simulation study to assess the impact of covariate adjustment using a variety of adjustment models in several different scenarios. This is followed by a real world application of the compared approaches to a COVID-19 trial with a binary endpoint. For all scenarios, it is shown that covariate adjustment increases power and the probability of stopping the trials early, and decreases the expected sample sizes as compared to unadjusted analyses.