论文标题
用于与不同颗粒大小的混合流动的动力流体建模的渐近保护方案
Asymptotic-preserving schemes for kinetic-fluid modeling of mixture flows with distinct particle sizes
论文作者
论文摘要
我们考虑了颗粒流的耦合模型,其中分散相由具有不同大小的颗粒制成。因此,我们被带到了一个系统,将不可压缩的Navier-Stokes方程耦合到多组件Vlasov-Fokker-Planck方程。我们设计了一个渐近保护数值方案来近似系统。该方案基于对刚性阻力项和Fokker-Planck操作员的适当隐式处理,并且可以正式证明可以通过时间步长和网格尺寸捕获流体动力学极限,而与Stokes数字无关。数值示例说明了该方案的准确性和渐近行为,并提供了一些有趣的应用。
We consider coupled models for particulate flows, where the disperse phase is made of particles with distinct sizes. We are thus led to a system coupling the incompressible Navier-Stokes equations to the multi-component Vlasov-Fokker-Planck equations. We design an asymptotic-preserving numerical scheme to approximate the system. The scheme is based on suitable implicit treatment of the stiff drag force term as well as the Fokker-Planck operator, and can be formally shown to capture the hydrodynamic limit with time step and mesh size independent of the Stokes number. Numerical examples illustrate the accuracy and asymptotic behavior of the scheme, with several interesting applications.