论文标题

$ 4F $ AU(111)底物上的旋转和电子激发

Spin and electronic excitations in $4f$ atomic chains on Au(111) substrates

论文作者

Facemyer, David W., Dandu, Naveen K., Lee, Alex Taekyung, Singh, Vijay R., Ngo, Anh T., Ulloa, Sergio E.

论文摘要

高自旋系统,例如那些在许多领域中越来越多的稀有地球元素(REES)(REES)的系统越来越相关。尽管在这种系统中的研究很少,但是对于许多应用来说,他们所占据的大型希尔伯特空间很有希望。在这项工作中,我们检查了AU(111)表面上的欧洲原子(EU)原子的一维线性阵列,并研究其电子和磁激发。使用与PBE+U的VASP进行的从头算计算来研究结构。我们发现欧盟原子在黄金时具有净充电,与$ \ simeq3.5μ_b$的净磁性兆头一致。检查各种自旋预测配置,我们可以在各向同性的海森贝格模型中评估第一个和第二个邻居交换能量 - $ \ frac {7} {2} {2} $ iments以获得$ j_1 \ j_1 \ of-j_1 \ out -1.1.2 \ of-1.2 \,\ mathrm {k} $ and $ j_2 $ 0.2 $0。 $ a \ of 5 $ $ \ mathrm {\ dot {a}} $的分离。这些参数用于获得一个可以实现的四原子链的完整自旋激发光谱。大的$ | J_1 |/J_2 $比率导致高度退化的铁磁基态,该基态由$ 0.6 $ k的重要平面单离子各向异性拆分。计算自旋绑带激发,以提取通过扫描隧道显微镜技术获得的微分电导率曲线。我们发现了局部自旋激发的有趣行为,尤其是当我们跟踪它们使用磁场的分散体时。

High spin systems, like those that incorporate rare-earth $4f$ elements (REEs), are increasingly relevant in many fields. Although research in such systems is sparse, the large Hilbert spaces they occupy are promising for many applications. In this work, we examine a one-dimensional linear array of europium (Eu) atoms on a Au(111) surface and study their electronic and magnetic excitations. Ab initio calculations using VASP with PBE+U are employed to study the structure. We find Eu atoms to have a net charge when on gold, consistent with a net magnetic momemt of $\simeq 3.5 μ_B$. Examining various spin-projection configurations, we can evaluate first and second neighbor exchange energies in an isotropic Heisenberg model between spin-$\frac{7}{2}$ moments to obtain $J_1 \approx -1.2 \, \mathrm{K}$ and $J_2 \approx 0.2 \, \mathrm{K}$ for the relaxed-chain atomic separation of $a \approx 5$ $\mathrm{\dot{A}}$. These parameters are used to obtain the full spin excitation spectrum of a physically realizable four-atom chain. The large $|J_1|/J_2$ ratio results in a highly degenerate ferromagnetic ground state that is split by a significant easy plane single ion anisotropy of $0.6$ K. Spin-flip excitations are calculated to extract differential conductance profiles as those obtained by scanning tunneling microscopy techniques. We uncover interesting behavior of local spin excitations, especially as we track their dispersion with applied magnetic fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源