论文标题

部分可观测时空混沌系统的无模型预测

Quantum Kernel for Image Classification of Real World Manufacturing Defects

论文作者

Beaulieu, Daniel, Miracle, Dylan, Pham, Anh, Scherr, William

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The quantum kernel method results clearly outperformed a classical SVM when analyzing low-resolution images with minimal feature selection on the quantum simulator, with inconsistent results when run on an actual quantum processor. We chose to use an existing quantum kernel method for classification. We applied dynamic decoupling error mitigation using the Mitiq package to the Quantum SVM kernel method, which, to our knowledge, has never been done for quantum kernel methods for image classification. We applied the quantum kernel method to classify real world image data from a manufacturing facility using a superconducting quantum computer. The manufacturing images were used to determine if a product was defective or was produced correctly through the manufacturing process. We also tested the Mitiq dynamical decoupling (DD) methodology to understand effectiveness in decreasing noise-related errors. We also found that the way classical data was encoded onto qubits in quantum states affected our results. All three quantum processing unit (QPU) runs of our angle encoded circuit returned different results, with one run having better than classical results, one run having equivalent to classical results, and a run with worse than classical results. The more complex instantaneous quantum polynomial (IQP) encoding approach showed better precision than classical SVM results when run on a QPU but had a worse recall and F1-score. We found that DD error mitigation did not improve the results of IQP encoded circuits runs and did not have an impact on angle encoded circuits runs on the QPU. In summary, we found that the angle encoded circuit performed the best of the quantum kernel encoding methods on real quantum hardware. In future research projects using quantum kernels to classify images, we recommend exploring other error mitigation techniques than Mitiq DD.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源