论文标题

多对象跟踪的神经增强的信念传播

Neural Enhanced Belief Propagation for Multiobject Tracking

论文作者

Liang, Mingchao, Meyer, Florian

论文摘要

多对象跟踪(MOT)的算法解决方案是自主导航和应用海科学应用程序应用的关键推动力。最先进的MOT方法完全依赖于统计模型,通常使用预处理传感器数据作为测量。特别是,测量值是由检测器产生的,该检测器从在离散时间步骤中收集的原始传感器数据中提取潜在的对象位置。此准备处理步骤可降低数据流和计算复杂性,但可能导致信息丢失。基于信念传播(BP)系统利用统计模型的图形结构以降低计算复杂性并提高可伸缩性的最先进的贝叶斯MOT方法。但是,作为一种完全基于模型的方法,BP只能在统计模型与真实数据生成过程之间存在不匹配时提供次优估计。现有的基于BP的MOT方法只能进一步利用预处理测量。在本文中,我们引入了BP的一种变体,该变体将基于模型的MOT与基于模型的MOT结合在一起。提出的神经增强信念传播(NEBP)方法通过从原始传感器数据中学到的信息补充了BP的统计模型。这种方法认为,学到的信息可以减少模型不匹配,从而改善数据关联和虚假警报拒绝。与基于模型的方法相比,我们的NEBP方法改善了跟踪性能。同时,它继承了基于BP的MOT的优势,即仅在对象数量中二次缩放,因此可以生成和维护大量对象轨道。我们评估了NEBP方法在Nuscenes自动驾驶数据集上的MOT的性能,并证明其具有最先进的性能。

Algorithmic solutions for multi-object tracking (MOT) are a key enabler for applications in autonomous navigation and applied ocean sciences. State-of-the-art MOT methods fully rely on a statistical model and typically use preprocessed sensor data as measurements. In particular, measurements are produced by a detector that extracts potential object locations from the raw sensor data collected for a discrete time step. This preparatory processing step reduces data flow and computational complexity but may result in a loss of information. State-of-the-art Bayesian MOT methods that are based on belief propagation (BP) systematically exploit graph structures of the statistical model to reduce computational complexity and improve scalability. However, as a fully model-based approach, BP can only provide suboptimal estimates when there is a mismatch between the statistical model and the true data-generating process. Existing BP-based MOT methods can further only make use of preprocessed measurements. In this paper, we introduce a variant of BP that combines model-based with data-driven MOT. The proposed neural enhanced belief propagation (NEBP) method complements the statistical model of BP by information learned from raw sensor data. This approach conjectures that the learned information can reduce model mismatch and thus improve data association and false alarm rejection. Our NEBP method improves tracking performance compared to model-based methods. At the same time, it inherits the advantages of BP-based MOT, i.e., it scales only quadratically in the number of objects, and it can thus generate and maintain a large number of object tracks. We evaluate the performance of our NEBP approach for MOT on the nuScenes autonomous driving dataset and demonstrate that it has state-of-the-art performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源