论文标题

通过潜在空间中的概率密度估计来控制文本生成

Controllable Text Generation via Probability Density Estimation in the Latent Space

论文作者

Gu, Yuxuan, Feng, Xiaocheng, Ma, Sicheng, Zhang, Lingyuan, Gong, Heng, Zhong, Weihong, Qin, Bing

论文摘要

对可控文本生成的先前工作探索了从潜在空间中控制的概念,例如使用与属性相关的分类器优化表示形式或从相关离散示例中采样表示形式。但是,它们在模拟潜在空间和控制方面还不够有效,使受控文本具有低质量和多样性。在这项工作中,我们使用潜在空间中的概率密度估计提出了一个新颖的控制框架。我们的方法利用可逆变换函数,即归一化流,该函数将潜在空间中的复杂分布映射到先前空间中的简单高斯分布。因此,由于可逆变换的一对映射属性,我们可以在先前的空间中执行先进的和灵活的控制,并将控制效果回到潜在空间中。关于单属性控件和多属性控制的实验表明,我们的方法在属性相关性和文本质量方面优于几个强大的基准,并实现了SOTA。对控制强度调整的进一步分析证明了我们的控制策略的灵活性。

Previous work on controllable text generation has explored the idea of control from the latent space, such as optimizing a representation with attribute-related classifiers or sampling a representation from relevant discrete samples. However, they are not effective enough in modeling both the latent space and the control, leaving controlled text with low quality and diversity. In this work, we propose a novel control framework using probability density estimation in the latent space. Our method utilizes an invertible transformation function, the Normalizing Flow, that maps the complex distributions in the latent space to simple Gaussian distributions in the prior space. Thus, we can perform sophisticated and flexible control in the prior space and feed the control effects back into the latent space owing to the one-one-mapping property of invertible transformations. Experiments on single-attribute controls and multi-attribute control reveal that our method outperforms several strong baselines on attribute relevance and text quality and achieves the SOTA. Further analysis of control strength adjustment demonstrates the flexibility of our control strategy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源