论文标题
在图上的非IID转移学习
Non-IID Transfer Learning on Graphs
论文作者
论文摘要
转移学习是指知识或信息从相关源域转移到目标域。但是,大多数现有的转移学习理论和算法都集中在IID任务上,其中源/目标样本被认为是独立的且分布相同的。理论上,很少努力研究非IID任务的知识可传递性,例如跨网络挖掘。为了弥合差距,在本文中,我们提出了从源图到目标图的跨网络转移学习的严格概括界和算法。关键的想法是从Weisfeiler-Lehman图同构测试的角度表征跨网络知识的传递性。为此,我们提出了一个新的图形子树差异,以测量源图和目标图之间的图形分布变化。然后,可以根据源知识和跨域之间的图形子树差异来得出跨网络传输学习的概括误差界限,包括跨网络节点分类和链接预测任务。因此,这激发了我们提出一个通用的图形自适应网络(等级),以最大程度地减少源图和目标图之间的分布变化,以进行跨网络转移学习。实验结果验证了我们的等级框架对跨网络节点分类和跨域推荐任务的有效性和效率。
Transfer learning refers to the transfer of knowledge or information from a relevant source domain to a target domain. However, most existing transfer learning theories and algorithms focus on IID tasks, where the source/target samples are assumed to be independent and identically distributed. Very little effort is devoted to theoretically studying the knowledge transferability on non-IID tasks, e.g., cross-network mining. To bridge the gap, in this paper, we propose rigorous generalization bounds and algorithms for cross-network transfer learning from a source graph to a target graph. The crucial idea is to characterize the cross-network knowledge transferability from the perspective of the Weisfeiler-Lehman graph isomorphism test. To this end, we propose a novel Graph Subtree Discrepancy to measure the graph distribution shift between source and target graphs. Then the generalization error bounds on cross-network transfer learning, including both cross-network node classification and link prediction tasks, can be derived in terms of the source knowledge and the Graph Subtree Discrepancy across domains. This thereby motivates us to propose a generic graph adaptive network (GRADE) to minimize the distribution shift between source and target graphs for cross-network transfer learning. Experimental results verify the effectiveness and efficiency of our GRADE framework on both cross-network node classification and cross-domain recommendation tasks.