论文标题
真空极化对Schwarzschild度量的量子校正
Quantum corrections to the Schwarzschild metric from vacuum polarization
论文作者
论文摘要
我们使用保形场作为来源的量子真空极化探索4维半经典爱因斯坦方程的静态和球形对称解。这些解决方案可能引起\ black {}外来,紧凑的对象(ECO)的研究。通过求解半经典的Tolman-Oppenheimer-Volkoff(TOV)方程来解决完整的反应问题,该方程利用有效的状态方程式启发\ black {by}痕迹异常和额外的简化和合理的假设。我们将分析和数值技术结合在一起,以在$ \ hbar $中扰动和非扰动而求解所得的微分方程。在所有情况下,解决方案都类似于Schwarzschild指标,直到经典视野$ r = 2M $的附近。但是,在$ r = 2m + \ varepsilon $,带有$ \ varepsilon \ sim o(\ sqrt {\ hbar})$的情况下,我们找到了一个坐标奇异性。在\ black {}与静态恒星匹配的情况下,这导致了紧凑性的上限,并对稳定的ECOS家族设定了约束。我们还研究了量子 - 维库姆极化会引起波的传播并讨论含义的校正。对于纯真空案例,我们可以使用适当的坐标进一步扩展溶液,直到我们到达另一个奇异点为止,在此期间,出现了无曲率的奇异性并防止延伸。这张图片定性地与有效的二维方法获得的结果一致,并将后者作为合理的方法加强。
We explore static and spherically symmetric solutions of the 4-dimensional semiclassical Einstein's equations using the quantum vacuum polarization of a conformal field as a source. These solutions may be of interest for \black{the study of} exotic, compact objects (ECOs). The full backreaction problem is addressed by solving the semiclassical Tolman-Oppenheimer-Volkoff (TOV) equations making use of effective equations of state inspired \black{by} the trace anomaly and an extra simplifying and reasonable assumption. We combine analytical and numerical techniques to solve the resulting differential equations, both perturbatively and nonperturbatively in $\hbar$. In all cases the solution is similar to the Schwarzschild metric up to the vicinity of the classical horizon $r=2M$. However, at $r=2M + \varepsilon$, with $\varepsilon\sim O(\sqrt{\hbar})$, we find a coordinate singularity. In \black{the} case of matching with a static star, this leads to an upper bound in the compactness, and sets a constraint on the family of stable ECOs. We also study the corrections that the quantum-vacuum polarization induces on the propagation of waves, and discuss the implications. For the pure vacuum case, we can further extend the solution by using appropriate coordinates until we reach another singular point, where this time a null curvature singularity arises and prevents extending beyond. This picture qualitatively agrees with the results obtained in the effective two-dimensional approach, and reinforces the latter as a reasonable method.