论文标题
从球体束的几何形状中持续的截断
Consistent truncations from the geometry of sphere bundles
论文作者
论文摘要
在本文中,我们根据球体束的经典几何特性对球体一致的截断提出了统一的视角。我们方法的骨干是球体的全球角形式。 $ n $ -sphere的the flux螺纹的kaluza-klein ansatz的通用公式可捕获与coset $ sl(n+1,\ mathbb r)/so(n+1)$相关的完整的nonabelian等轴测组$ so(n+1)$(n+1)$和标量变形。在所有情况下,标量以精确形式的换档进入ANSATZ。我们发现,后者可以通过施加超对称性的轻度条件来完全固定,这是由于较高维理论的尺寸降低引起的标量电势。我们评论全球角形式在较低维理论的拓扑结合的推导中的作用,以及这种观点如何为对超对称性较少的一致截断提供研究。
In this paper, we present a unified perspective on sphere consistent truncations based on the classical geometric properties of sphere bundles. The backbone of our approach is the global angular form for the sphere. A universal formula for the Kaluza-Klein ansatz of the flux threading the $n$-sphere captures the full nonabelian isometry group $SO(n+1)$ and scalar deformations associated to the coset $SL(n+1,\mathbb R)/SO(n+1)$. In all cases, the scalars enter the ansatz in a shift by an exact form. We find that the latter can be completely fixed by imposing mild conditions, motivated by supersymmetry, on the scalar potential arising from dimensional reduction of the higher dimensional theory. We comment on the role of the global angular form in the derivation of the topological couplings of the lower-dimensional theory, and on how this perspective could provide inroads into the study of consistent truncations with less supersymmetry.