论文标题
球的环形解决方案
Annular solutions to the partitioning problem in a ball
论文作者
论文摘要
对于任何$ n \ in \ mathbb {n} $,$ n \ geq 2 $,我们构建了一个真实的分析,单参数的紧凑型嵌入式cmc annuli家族,具有自由边界的单位球$ \ mathbb {b}^b}^3 $ of $ \ mathbb {r}^3 $ with prism symertic uspatics $ 4N $ 4N $ 4N。这些示例通过Nitsche和Wente对唯一性问题给出了负面答案,即是否应对球中的分区问题进行任何环形解决方案。
For any $n\in \mathbb{N}$, $n\geq 2$, we construct a real analytic, one-parameter family of compact embedded CMC annuli with free boundary in the unit ball $\mathbb{B}^3$ of $\mathbb{R}^3$ with a prismatic symmetry group of order $4n$. These examples give a negative answer to the uniqueness problem by Nitsche and Wente of whether any annular solution to the partitioning problem in the ball should be rotational.