论文标题

球的环形解决方案

Annular solutions to the partitioning problem in a ball

论文作者

Cerezo, Alberto, Fernandez, Isabel, Mira, Pablo

论文摘要

对于任何$ n \ in \ mathbb {n} $,$ n \ geq 2 $,我们构建了一个真实的分析,单参数的紧凑型嵌入式cmc annuli家族,具有自由边界的单位球$ \ mathbb {b}^b}^3 $ of $ \ mathbb {r}^3 $ with prism symertic uspatics $ 4N $ 4N $ 4N。这些示例通过Nitsche和Wente对唯一性问题给出了负面答案,即是否应对球中的分区问题进行任何环形解决方案。

For any $n\in \mathbb{N}$, $n\geq 2$, we construct a real analytic, one-parameter family of compact embedded CMC annuli with free boundary in the unit ball $\mathbb{B}^3$ of $\mathbb{R}^3$ with a prismatic symmetry group of order $4n$. These examples give a negative answer to the uniqueness problem by Nitsche and Wente of whether any annular solution to the partitioning problem in the ball should be rotational.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源